
 MINAR

This article has been scanned by iThenticat No plagiarism detected

International Journal of Applied Sciences and Technology

ISSN: 2717-8234

Article type: Research Article

Received: 16/03/2022 Accepted: 05/ 40 /2022 Published: 01/06/2022

USING SOFTWARE ENGINEERING TO DESIGN AND IMPLEMENT MIXER OF MULTIPLE

CAMERAS, MICROPHONE, AND SCREENS

 Naktal Moaid EDAN1

University of Mosul, Iraq

Sanabil A MAHMOOD2

University of Mosul, Iraq

Abstract

To connect with user media devices such as microphones and cameras, browsers formerly

required Flash. Flash has essentially replaced Web Real-Time Communication (WebRTC) in

recent years. The principles of WebRTC have not agreed on how browsers can capture

audio, video, and data or screens. The major purpose of this research is to create a new

WebRTC recording method that uses Google Chrome and Firefox to capture a mixture of

cameras, microphones, and screens. In addition, this study used Software Engineering (SE)

concepts such as the software design process and interface design, which is the description

of a system's relationships with its environment, including the analysis and development of

the designed systems. The MultiStreamsMixer.js libraries were used to design and

implement a mixer of many cameras, microphones, and screens using the Ethernet and

Wireless of the 4th generation (4G) network. The suggested technique also makes use of the

JavaScript Library to capture audio, video, and screen (two-dimensional and three-

dimensional animations); as well as numerous audio and video codecs, such as VP8 and

VP9 for video and Opus for audio, were also utilized in Chrome and Firefox. Additionally,

multiple bitrates ranging from 100 bytes per second to 1 Gigabit per second were also

tested. Besides, various resolutions ranging from 480p to HD (3840* 2160) and frame rates

ranging from 5 to 70, increasing by 5% each time were applied. In addition, the recording

device, Quality of Experience (QoE) over real operators, and resources were evaluated.

Keywords: Software Engineering (SE); Software Design Process; Web Real-Time

Communication; Quality of Experience (QoE); 4th internet generation.

 http://dx.doi.org/10.47832/2717-8234..118

1 naktal.edan@uomosul.edu.iq, https://orcid.org/0000-0003-0799-1858

2 sanabil_2000@uomosul.edu.iq, https://orcid.org/0000-0002-5939-5890

Volume 4, Issue 2, June 2022

75

www.minarjournal.com

Introduction

1.1. Overview

Software Engineering (SE) is described as the procedure of evaluating the
requirements of the user and then designing, developing, and testing software to meet

those requirements. Thus, in this effort, an application of mixer cameras, microphones,

and screens was designed and implemented successfully using MultiStreamsMixer.js

libraries. So, using SE on a certain module allows you to change the software's

appearance, functionality, and so on. Additionally, Web Real-Time Communication

(WebRTC) was announced in 2011 by the Internet Engineering Task Force (IETF) and
World Wide Web Consortium (W3C) [1][2][3][4][5]. WebRTC is a default option and a set of

frameworks [6] that enable cooperating video and data exchanges [7][8][9][10]. It also has

many advantages, including no costs, no certificate, without plug-ins, and it enables

flexible software engineering and the identification of appropriate interactions by using the

WebRTC approach [11][12][13]. In [14], highlighted that recording has modified the

delivery and consumption of

education, Furthermore, WebRTC has offered various Application Programming
Interfaces (APIs) for usage in recording, as specified in the relevant W3C documents that

have been applied on modern webpages [15]. WebRTC misses high-end videoconferencing

features like session recording [16]. Furthermore, [14] WebRTC standards, have not taken

into account what is going on with computer recording (screen) and the recording of all

media material. WebRTC analyzes the causes for all surfaces in demand to use online apps

for broadcasting and capturing that is facilitated by the microphone, camera, and screen.

The main goals of this study are as below:

A. Structure and exam a WebRTC recording mechanism.

B. Run the instrument via the 4G network.

C. Use many multimedia codecs.

D. Use numerous bitrates.

E. A variety of resolutions were investigated.

F. Arrangements rates were tested, including several bitrates.

G. An assessment of the recording mechanism and resources was achieved.

As a result, an innovative execution was achieved across multiple networks,

browsers, codecs, peers, and MultiStreamsMixer.js libraries establishing multiple cameras,

and microphones around the same time, retaining transmitting dynamic as long as the
user requires, saving the record, and only using the recording as connecting with a

complete screen. The plan of this research is as defined; Section II debates the research

review. In section III, the performance of the procedure of the paper is clarified with

execution and investigation. Section IV shares the estimation. Lastly, Section V is the

decision and upcoming effort.

1.2. Research Review

In [17][16][14][18][19], indicated that the key WebRTC concerns are camera and

microphones capture and screen; in particular, it has not been developed. Also, in [20] the

author stated that an interface for screens using WebRTC for Automaton was created
using the “getUserMedia API”, but the work was never proven or shown. In addition, [21]

estimated that using “MediaRecorder API” can sustain recording on the Web. In contrast,

[22] demonstrated that session recording via cameras or screens is a substantial difficulty

because the WebRTC standard does not provide a streaming mechanism for gathering and

storing information. Accordingly, [18][23] WebRTC necessitates several workarounds, such
as recording features to permit machines to engage in restricted network scenarios and a

WebRTC conferencing idea to aid in recording discussions. Further, [11] established that in

the course of the test, a screen recorder is essential for information.

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

76

www.minarjournal.com

2. Approach, Implementation, and Analysis

2.1. Approach

For the construction and recording design and test of this software, various modules

for the screen, and canvas (2nd and 3rd animation) were utilized. A task manager was also

used to analyze CPU performance, as well as a NetCommWireless access point that can

deliver 4G, resources, Google Chrome and Firefox were also used on the client-side. In

addition, one PC is linked to the 4G networks via (Ethernet and Wireless).

2.2. Implementation

Using the “MediaRecorder API”, and WebRTC JavaScript code, a new system for

recording has already been devised and implemented in this study for screens and “(2nd +

3rd animation) recording”. To complete this task, this submission has evaluated software
engineering levels, including design and development processes. It has also been

presented under the following headings: Set up a major browser (Index HTML), use the

“RecordRTC API”, and use the “node.js server”.

2.2.1. Set the main Page

Firstly allow access many cameras, microphones, and screens; MultiStreamsMixer.js

libraries were used including the “getUserMedia API”. As result, “RecordRTC” can start

recording videos. Furthermore, JavaScript languages were printed to construct this

presentation, as shown: (a) Begin/pause capturing; (b) Save the recording to a disk, (c)

break the recording automatically within 4 minutes (to delete all the captured records), (d)

Add extra media-streams (to existing recordings), (e) uses the following libraries:

1. MultiStreamsMixer.js libraries to offer.

 A mixture of several cameras or videos.

 A mixture of several microphones.

 A mixture of audios, such as Wav and Mp3.

 A mixture of many screens

2. “GetRecorderType.js”.

3. “MRecordRTC.js”.

4. “MediaStreamRecorder.js”.

5. “StereoAudioRecorder.js”.

6. “CanvasRecorder.js”.

7. “RecordRTC.promises.js”.

8. “WebAssemblyRecorder.js”.

9. “MRecordRTC.js” (to bring multiple records into one place).

It adjusts the video width to 640 pixels wide and high to 480 pixels high, as

illustrated in Figure (1). After a creator opens the browser, it displays an audio and video
"MediaStream," which can be retrieved by capturing the screen using the

“navigator.getUserMedia” method. Once a media has accessibility to the camera and

microphone, it will begin streaming the multimedia and displaying it before saving it to a

hard disk. The pseudocode for this experiment is shown in Figure (2). A user must close or

reload the web page to leave the room or modify the setup, such as determination,
bitrates, and codec. You may also control the camera or microphone's streaming, exploit

the screen, or silence the video at any time.

http://www.minarjournal.com/

Volume 4, Issue 2, June 2022

77

www.minarjournal.com

Figure1. The principal browser via Chrome presents using different kind of cameras, and
microphones and get mixed screen.

Figure2. Multiple cameras via Chrome using VP8 video codec.

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

78

www.minarjournal.com

 Adjust MultiStreamsMixer.js;
 Adjust JavaScript;
 Adjust Node.js;
 Adjust K1= Access local resources (Camera and Microphone);
 Adjust SS= Start Flooding;
 Adjust PT= Pause Flooding;
 Adjust Media Stream;
 SWITCH Twitch Recording;
 CASE1: open a new page;
 First: internal available;
 IF KI = yes; THEN access camera and microphone;
 ELSE connect the internal;
 First: start flooding;
 IF SS = yes; THEN stream and save media on disk;
 ELSE SS= end flooding and run recorded media;
 Second: pause flooding;
 IF PT = yes; THEN PT = end flooding and recording;
 ELSE PT = restart flooding;
 Third: change the situation;
 IF CR= yes; THEN modification resolution, frame rates, etc.;
 ELSE go out by default;
 End

Figure 3. Application pseudocode.

2.2.2. Produced Mechanism

RecordRTC API and JavaScript Techniques were utilized to construct and utilise this

mechanism. Using Google Chrome, Firefox, and Opera, the “RecordRTC library” was

used to establish and

establish an original meeting for screens. It has also provided a slew of new
JavaScript methods for working with local and remote streams. Figure (1), shows an

example of a software engineering development approach (3).

Figure4. the waterfall software development approach to present
design steps.

http://www.minarjournal.com/

Volume 4, Issue 2, June 2022

79

www.minarjournal.com

2.3. Analysis

2.3.1. Signalling Protocol

This mechanism was studied independently for ten users to see how long it took
them to become ready. This was constructed based on a net analysis of Google Chrome

and Firefox, elements during actual communication. The overall time was deliberate, and it

takes 122 milliseconds (ms) to get prepared and 455 milliseconds (ms) to start streaming

media. This system may concurrently establish, and transmit screens. The postponement

varied slightly depending on whether you use Chrome and Firefox. The performance of

audio, films, and the screen, on the other hand, was unaffected by CPU load or bandwidth

use; in particular, media streaming between internal devices was unaffected.

2.3.2. Quality of Video Conferencing

Individual tests were conducted among 8 users across the 4G networks to assess

audio, video, and screen quality. As a result, the audio, video, and screen quality were all
great. As a consequence, as demonstrated in Table (1), employing the forming method for

recording audio, videos, and screens is effective.

Table 1, the value of the screen among users over (LAN & WAN) the

4G networks.

No.

Browser

OS

Type

Codec

Period

Value of
Audio and

video

Value of

Screen Video Audio

1.

Chrome

Win 10

Multimedi

a and

Screen

VP8,

VP9

OPUS

1 - 10

minute

Excellent

Excellent

2.

Firefox

Win 10

Multimedi

a and
Screen

VP8,

VP9

OPUS

1 - 10

minute

Excellent

Excellent

2.1.3. Quality of Experience (QoE)

The author indicated that QoE is important and has been recognized as a particular
framework in broadcasting communication and that the ITU-T group has adopted it [24].

Users participated in this test by filling out a questionnaire to provide feedback on their

actual customer knowledge, as shown in Table (2). This presentation demonstrated great

screen recording quality, particularly amongst 10 users across the 4th G networks.

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

80

www.minarjournal.com

Table 2, QoE of 15 customers via 4G network.

Questions

Very Bad

Bad

Fair

Good

Excellent

Access the system via the

RecordRTC

 15

Assess the system at all 1 14

Assess the quality of
multimedia through the

meeting

 2 10 3

Assess the quality of the
screen throughout the

meeting

 1 14

Assess the easiness of the usage 1 4 10

Is this system convince you
to use RecordRTC

 5 10

4. Evaluation

It was demonstrated that the proposed program can be used to maintain recording
across a variety of browsers, including Google Chrome and Firefox. To start, stop, and

include media streaming via the 4G networks, this solution employs a new WebRTC

recording method. Furthermore, it provides video conferencing, maintains media streaming

efficiency, and manages self-streams. It was made without the use of any external devices

or a commercial cloud/server. This project is the first to use the 4G network to develop a

WebRTC recording appliance for screen recording. The Safari browser, on the other hand,

is not supported.

5. Decision and Upcoming Work

A massive effort was considered in this research that started from linking between
WebRTC and SE until finding the way that can enable and support the communication

among many users to present a mixer of cameras, microphones and screens. Thus, a new

WebRTC technique was built and tested in this research using the 4th generation network.

The MultiStreamsMixer.js libraries were utilised to start, stop, and restart cameras,

microphones, and screens for streaming. This result is powerful because it provides a
visual demonstration of true face-to-face communication across various networks and

browsers. Furthermore, it improves communication, connections, and efficiency between

customers and teams. This endeavour will be expanded in the future to include additional

scalable cameras, microphones and screens.

http://www.minarjournal.com/

Volume 4, Issue 2, June 2022

81

www.minarjournal.com

References

1- B. Y. Julian. Jang-Jaccard, Surya. Nepal, Branko. Celler (2016), “WebRTC-based video

conferencing service for telehealth,” Computing, vol. 98, no. 1–2, pp. 169–193.
2- N. Edan, A. Al-Sherbaz, and S. Turner (2018), “Design and implement a hybrid

WebRTC signalling mechanism for unidirectional & bi-directional video

conferencing,” Int. J. Electr. Comput. Eng., vol. 8, no. 1.

3- N. M. Edan, A. Al-Sheraz, and S. Turner (2017), “WebNSM: A Novel WebRTC Signalling

Mechanism for One-to-Many Bi-directional Video Conferencing,” in Proceedings of

2018 SAI Computing Conference, pp. 1–6.
4- S. Perreault (2010(, “Traversal Using Relays around NAT (TURN) Extensions for TCP

Allocations,” USA.

5- V. P. I. Baz Castillo, J. Millan Villegas (2014), “The WebSocket Protocol as a Transport

for the Session Initiation Protocol (SIP),” Spain.

6- M. Phankokkruad and P. Jaturawat (2015), “An Evaluation of Technical Study and
Performance for Real- Time Face Detection Using Web Real-Time Communication,” in

International Conference on Computer, Communication, and Control Technology

(I4CT), no. I4, pp. 162–166.

7- M. L. Giuliana. Carullo, Marco. Tambasco, Mario. Di Mauro (2016), “A Performance

Evaluation of WebRTC over LTE,” in 12th Annual Conference on Wireless On-demand

Network Systems and Services (WONS), pp. 170–175.
8- N. M. Edan, A. Al-sherbaz, and S. Turner (2017), “Design and Evaluation of Browser-

to-Browser Video Conferencing in aWebRTC,” in 2017 Global Information

Infrastructure and Networking Symposium (GIIS), p. 4.

9- S. Owesen-Lein (2015), “Unified Communication and WebRTC,” Norwegian University

of Science and Technology.
10- C. J. S. Nandakumar (2018), “Annotated Example SDP for WebRTC: draft-IETF-rtcweb-

SDP-09,” USA.
11- L. O. D. N. Eirik. Fosser (2016), “Quality of Experience of WebRTC based video

communication,” Norwegian University of Science and Technology.
12- N. M. Edan, A. Al-sherbaz, and S. Turner (2017), “WebNSM : A Novel Scalable WebRTC

Signalling Mechanism for Many-to-Many Video Conferencing,” in 3rd IEEE

International Conference on Collaboration and Internet Computing (CIC), vol. 2, pp. 1–
7.

13- T. F. Michael. Adeyeye, Member, Ishmeal. Makitla (2013), “Determining the signalling

overhead of two common WebRTC methods: JSON via XMLHttpRequest and SIP over

WebSocket,” in Africon, Pointe- Aux-PimentsConference, pp. 0–4.
14- S. Skrødal (2016), “SA8T2 Internal Deliverable Technology Scout : Stream and record

lectures with WebRTC”.

15- N. PINIKAS (2016), “A Webrtc Based Platform for Synchronous Online Collaboration

and Screen Casting,” Technological Educational Institute of Crete.

16- M. Pasha, F. Shahzad, and A. Ahmad (2016), “Analysis of challenges faced by

WebRTC videoconferencing and a remedial architecture,” Int. J. Comput. Sci. Inf.

Secur., vol. 14, no. 10, pp. 698– 705.
17- B. Bos, E. Davies, L. Desmet, S. Farrell, M. Johns, and R. Wenning (2014). “Strategic

Research Roadmap for European Web Security”.

18- M. Walter (2015). “WebRTC multipoint conferencing with recording using a Media

Server,” Stuttgart Media University.

19- J. Rodriguez, Pedro. Cerviño Arriba, Javier. Trajkovska, Irena. Salvachua (2019).
“Advanced videoconferencing based on webrtc,” in IADIS Multi Conference on

Computer Science and Information Systems, p. 6.

20- P. Kinlan, 2016 “Screen recording on Android with getUserMedia and WebRTC,”

[online] available from https://medium.com/dev-channel/screen-recording-on-

android-with-getusermedia-and-webrtc- c32ba9d29c28. [Accessed November 25,

2019].
21- S. Penadés, 2016 “Record almost everything in the browser with MediaRecorder,”

[online] available from https://hacks.mozilla.org/2016/04/record-almost-everything-

in-the-browser-with-mediarecorder/. [Accessed October 7, 2019].

22- P. Rodríguez, J. Cerviño, I. Trajkovska, and J. Salvachúa (2012). “Advanced

Videoconferencing Services Based on WebRTC,” in IADIS International Conferences

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

82

www.minarjournal.com

Web Based Communities and Social Media 2012 and Collaborative Technologies, pp.

180–184.

23- B. García, L. López-Fernández, F. Gortázar, and M. Gallego (2019). “Practical

evaluation of VMAF perceptual video quality for webRTC applications,” Electron., vol.

8, no. 8, pp. 1–15.
24- R. C. Streijl, S. Winkler, and D. S. Hands (2016). “Mean opinion score (MOS) revisited:

methods and applications, limitations and alternatives,” Multimed. Syst., vol. 22, no.

2, pp. 213–227.

http://www.minarjournal.com/

