
 MINAR

International Journal of Applied Sciences and Technology

ISSN: 2717-8234

Article type: Research Article

Received: 23/06/2023 Accepted: 20/07/2023 Published: 01/09/2023

USE CASE TOOLS FOR IDENTIFICATION SOFTWARE REQUIREMENTS: STATE OF ART

Maha Salah Aldin AHMED1

University of Mosul, Iraq

Naktal Moaid EDAN2

University of MosuL, Iraq

Abstract

The requirement analysis step of the Software Engineering Life Cycle (SELC) is the most

crucial in order to ensure excellent quality. Besides, requirements specifications must be

compared to the consistency, completeness, and correctness (3C's). Thus, dealing with

Natural Language (NL) requirements makes this more challenging than usual., The

problems that appear at this stage, if they are not detected or proceed, will lead to errors in

the system and sometimes to the failure of the entire system; in addition to the effort

required and the cost of maintenance will be large. Accordingly, to overcome these problems,

different tools have been developed and implemented to analyse the requirements through

Natural Language Processing (NLP). These tools facilitate the process of eliciting

requirements through Unified Modelling Language (UML) diagrams. Additionally, creating

UML diagrams from NL specifications is a very difficult process. In particular, few efforts

have been made in the work of extracting NL specifications, so these diagrams facilitate

understanding and analysis of requirements and reduce the time of completion very

significantly compared to the manual method. Using automated software engineering tools

presents high-quality software that can be produced to help software developers and

engineers. The main aim of this research is to concentrate on analysing requirements based

on the Use Case Diagram, which is a more popular one in UML diagram. Thus, this research

will support other researchers in understanding and specifying the useful tools and

mechanisms that can help them to analyse the requirements through Natural Language

Processing (NLP) based UML diagrams.

Keywords: Unified Modelling Language (UML) diagrams; Software Requirement Analysis;

Natural Language Processing (NLP); Software Engineering Life Cycle (SELC).

 http://dx.doi.org/10.47832/2717-8234.16.1

1 maha.21csp15@student.uomosul.edu.iq

2 naktal.edan@uomosul.edu.iq, https://orcid.org/0000-0003-0799-1858

mailto:naktal.edan@uomosul.edu.iq

MINAR International Journal of Applied Sciences and Technology

2

www.minarjournal.com

1. Introduction

1.1. Overview

An essential step that has a significant influence on the software requirements

analysis stage of the software development life cycle (SDLC) is automating the collection of

requirements. To manage Natural Language (NL) text where the needs are articulated, this

automation makes use of cutting-edge Natural Language Processing (NLP) tools and

techniques. These criteria can be documented in a variety of ways, such as in unstructured,

semi-structured, or structured formats. The semi-structured format is one of them that is

frequently used. It should be noted that the use case description contains a variety of

keywords that are essential for creating the criteria for extracting UML diagrams.

The division of UML diagrams into structural and behavioral models, each addressing

different facets of the software is shown in Figure (1). Class diagrams take up a substantial

amount of space among these models since they constitute the foundation of software

development. The correct implementation of classes, including their properties, methods,

and interactions with other classes, is crucial to the effective creation of software.

Automating the extraction of class diagrams is essential in this situation because it enables

requirement analysts and stakeholders to work together productively. To automate the

selection of class diagram models from semi-structured functional requirements, this work

presents a unique set of principles. The use of these guidelines improves the automatic

selection of class diagram models' correctness. It should be emphasized though that even

with the incorporation of both old and new regulations, there is still opportunity for

development. It is difficult to extract class diagrams from semi-structured requirement

papers, and even with the existing set of rules, there are restrictions. It is required to

investigate new rules and patterns that may handle different phrase forms in order to

further improve the procedure. It is acknowledged that rule-based approaches alone fall

short of fully addressing the challenge at hand [1].

This survey defines the following as its structure: The relevance of the requirements

analysis and the use of UML diagrams in software development are briefly discussed in

Section II. Section III includes an overview of recent research. Also, the discussion of this

work's in Section IV. Finally, the conclusion is explained in section V.

http://www.minarjournal.com/

Volume 5, Issue 3, September 2023

3

www.minarjournal.com

Figure1. Type of UML diagram

Definitions

The semantic processing of human Natural Language (NL) is known as Natural

Language Processing (NLP). It includes the processing of text by computers in a way that is

understandable to people. NLP focuses on using computer processing to make text

comprehensible to people. Software Requirement Specification (SRS) and Software Design

Specification (SDS) are two crucial textual outputs in the context of Software Development

Life Cycles (SDLCs). NLP approaches may be used to perform several operations on these

deliverables. The Object-Oriented Analysis and Design (OOAD) method became the most

efficient way of organizing and creating software systems as Object-Oriented Programming

(OOP) languages gained popularity [2].

The integration of various modelling standards led to the creation of the Unified

Modeling Language (UML). It has emerged as the widely accepted global standard for the

development of design documentation, visualization, and construction of software systems.

UML provides graphical notations that enable the description and definition of complex

systems in a simplified manner [3]. As a foundational element of Object-Oriented Analysis

and Design (OOAD), the UML class diagram offers a conceptual approach to address

software system design requirements.

 NLP systems are used to execute various degrees of analysis on NL requirements

based on the information stated above. However, because CASE tools are interdependent,

system analysis may be a laborious operation. There have been attempts to use NLP to

create UML diagrams and analyze NL requirements. Nevertheless, the use of NLP to assist

requirement analysts in NL requirement analysis continues to be a hot matter of debate,

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

4

www.minarjournal.com

necessitating more improvements and substantial growth. So, any software project utilizing

the SDLC must have a strong basis in Requirement Engineering (RE). Besides, it includes

the data that the customer has acquired and understood and is used to create software

requirements. Also, it is impossible to overestimate the importance of RE in the SDLC given

that a poor requirements analysis may cause project delays or even failure [2]. Figure (2),

emphasizes the importance of the requirements analysis stage.

 Last but not least, UML is one of the most extensive languages used for graphic

modelling. Thus, a wide variety of diagrams were taken into consideration, along with a brief

explanation of how they were used, the primary benefits and drawbacks of the UML

language, and its object-oriented methodology [4].

Figure2. Importance of the requirements analysis stage

Requirement analysts in SE spend a massive time processing SRS manually.

Therefore, researchers have been attempting to automate this process to make it easier. In

addition, the majority of the current methods need some analyst involvement or are

challenging to use NLP technologies may be used to effectively tackle challenging and

complicated procedures in requirements engineering. But, it might be challenging to

translate informal NL requirements into UML diagrams. The approaches that are currently

used for this purpose are either limited, computationally expensive or require significant

complexity. As a result, researchers have discovered earlier methods that need to be

improved upon in order to build UML diagrams. Moreover, they have noticed that prior

techniques required developer involvement to produce UML diagrams; also, they have been

some recent developments in automated methods, though. These techniques can function

without the help of developers since they are made to handle particular input types,

including limited natural language or particular text formats. In contrast, previous research

http://www.minarjournal.com/

Volume 5, Issue 3, September 2023

5

www.minarjournal.com

has concentrated on producing informal NL requirements in UML use cases and activity

diagrams.

Software analysts can benefit greatly from the availability of a completely automated

approach or tool for requirement elicitation and modelling. As a result, it may result in

shorter software project development times and lower total costs. Accordingly, numerous

tools and approaches have been developed to extract data from NL text and generate UML

diagrams. Conversely, NL processing poses several challenges as the following:

1. Ambiguity.

2. Uncertainty.

3. Incompleteness.

4. Illogicality.

 These challenges often lead to limitations in the performance of existing techniques

[5]. Requirements engineering introduces its own set of difficulties, requiring additional

efforts in areas like requirements elicitation, verification, and traceability [6].

2. Related Works

A method to automatically extract UML activity and use case diagrams from Python

and Java source codes was introduced by the authors in their article [7]. This application

makes the extraction of behavior diagrams for UML easier for programmers in the discipline

of Computational Science and Engineering (CSE). This application allows developers to make

well-informed judgments about the activities involved in software development and

maintenance.

Reverse Engineering (RE) is the focus of this study with UML diagrams serving as the

target behavior models. On the other hand, the instrument lacks participant information

that depends largely on:

1. Human experience.

2. Especially for crucial use casework.

3. Lacks a graphical user interface (GUI).

4. User reports for evaluation.

Because the tool's results have not yet been verified, these aspects provide difficulties

for assessment. it does not address the complexities and voluminous nature of requirements

[7].

As mentioned in [8], introducing an effective method for requirement engineering, so

describes a process for encoding software requirement descriptions, with a focus on

assisting medical operations. The SDLC's requirement engineering stages can be improved

with the use of this technique. Therefore, numerous methods are used including the VORD

approach as shown in Figure (3). However, it should be highlighted that at the initial step of

the analysis, the VORD technique does not explicitly identify objects. The perspective

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

6

www.minarjournal.com

documentation is converted into an object model for requirement specification at the fourth

step, known as system mapping.

Figure3. word method of Requirement analysis

The authors show how to automate the development of UML diagrams using NL

processing techniques [9]. Users of the program can view a document from which the tools

for creating the diagrams have retrieved the essential data. The syntax of the activity and

sequence diagrams is defined by this method's reliance on the Java programming language.

Additionally, it is claimed that commercial software products like IBM Rational Rose and

Altova, which offer a drag-and-drop interface for creating UML diagrams without the need

for exhaustive requirement specifications can be used. As a result, customers may

frequently acquire the same graphic without having to specify their needs in great detail.

In their publication [10], a method and tool were proposed to simplify the

requirements analysis process and extract UML diagrams from textual requirements. This

approach involved the utilization of NLP and Domain Ontology techniques. Still, the work

lacks results, analysis, discussion, and evaluation, indicating a lack of tangible outcomes.

A suggestion for an automated method to derive UML class diagrams from natural

language software requirements was made [11]. Using both rules and free-flowing text, this

method uses machine learning to accomplish a fully automated generating process.

However, this approach's usefulness is constrained when dealing with noun phrases longer

than two words, as well as instances of spelling mistakes and vague requirements. While

confusing specifications result in the construction of misleading diagrams, spelling errors

might result in the creation of superfluous UML classes or associations. This method has an

81% accuracy rate. The estimated top limit of accuracy for the findings is 0.63, although,

assuming equal effect from all components, this level of precision is insufficient for practical

usage.

http://www.minarjournal.com/

Volume 5, Issue 3, September 2023

7

www.minarjournal.com

In [12], the authors proposed a technique for streamlining the conversion of user

requirements into UML class diagrams. The suggested research involves enhancing the

production of UML diagrams with NL, enabling more effective and error-free software

requirement analysis. When it comes to performing in-depth analyses and comparisons, this

technique is constrained. It was neither evaluated using a realistic system nor was it tested

in the context of a genuine software development project. As a result, it may not accurately

represent real-world circumstances. Additionally, it only concentrates on a particular

language, like English. NLP methods applied to requirements text were used to generate

UML use case diagrams [13]. The method separated English phrases into their parts, called

parts of speech (POS), and gave each one a particular grammatical pattern. Grammar and

spelling mistakes were also found using the Ginger Spell Checker (GSC) program. The

method has an average recall rate of 69.8% and a precision percentage of 72%. However,

several difficulties limited the job. For instance, defining chunking rules was challenging

due to the lack of chunking tools for English languages. Additionally, poorly drafted

Software Requirement Specification (SRS) documents influenced the rating. The fact that the

installation was only carried out on four systems in English.

In [14] concentrated on creating and evaluating a technique and software tool for the

automatic production of UML diagrams in the context of object-oriented programming. This

approach uses an NLP technique to automatically create UML diagrams from scenario-based

requirements that are provided in English using a system called AGUML. It was examined

and assessed whether the algorithm and AGUML were accurate. However, more

improvements are required to increase the algorithm's adaptability, enabling less

constrained scenario texts and supporting alternate flows. Additionally, as any ambiguity or

constraints in the input may result in mistakes in the resultant diagrams, the correctness of

the created UML diagrams depends on the clarity of the information supplied.

In [15], the researchers presented an approach to generate natural language from

formal specifications to aid in communicating complex technical matters to human beings.

It used the UML Analysis and Understanding Tool (UMLAUT), an implementation of a

UML/OCL to natural language specification tool. However, it has not yet scientifically

evaluated this approach. Also, the used algorithm will not work when cryptically names or

uncommon abbreviations are used within the model. Including, it handles a comparably

small subset of UML/OCL. As well as, if this approach turns out to be valid, future work

must incorporate other common diagram types as well as more complex OCL constructs.

Additionally, the quality of the generated language needs to be evaluated in detail. The core

issue here is to find a reliable metric to grade a natural language specification with or to

conduct a larger-scale study as to how the generated specification is perceived. The AGUML

algorithm is dependent on the accuracy and completeness of the presented scenarios. Since

the algorithm is based on scenario-based user requirements written in natural English, any

ambiguities, inconsistencies, or missing information in the scenarios can lead to errors or

incomplete UML diagrams.

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

8

www.minarjournal.com

In [16], a method for doing this was developed, making use of the Model-Driven

Architecture (MDA) method. The objective was to automatically convert a series of user

stories into UML use case diagrams using NLP approaches, especially using the Tree Tagger

parser. This would solve the problem of creating the Computational Independent Model

(CIM). Through a case study, the methodology was verified, with validation rates ranging

from 87% to 98%. It is important to keep in mind that there are currently only a few ways

for creating UML diagrams from requirements at the CIM level, and the suggested approach

is unable to handle phrases with several compound nouns, such as "Administrator database

manager.". Furthermore, the achievement of generalization and specialization relationships

between actors and use cases was not addressed. Also, this research does not evaluate the

effectiveness of the proposed process in real-world software development projects, which

could limit its practical usefulness. Too, not being able to handle complex sentences or

relationships between use cases, may lead to errors or inaccuracies in generated diagrams.

The research does not provide a comparative analysis of the proposed technique with other

existing methods.

In [17], a method for helping developers create UML models from normalized NL

requirements using NLP approaches was described. The approach mainly concentrates on

developing an analysis class model (conceptual model) and a use-case diagram. A

condensed design class model is then created, which may then be used as a foundation for

creating a code model, and a collaboration model is developed for each use case. However, it

should be highlighted that this method cannot distinguish between objects and

characteristics and suffers from accuracy when choosing objects for bigger systems.

A tool was developed as described in [18], to provide thorough automated support in

the development of static and dynamic design models from NL requirements. This strategy is

intended for a small subset of requirements, namely those with a word count of under 200

words. Additionally, text normalization is not offered, which may result in information loss

when processing bigger requirement papers. While it would seem hard to fully automate this

process using NLP, there is yet room for advancement.

The researchers in [19] created a prototype solution to automate the tracing of

abstract interactions, minimizing the human work necessary for a group of requirements

engineers to identify key use cases. Marama Essential was used in the tool, enabling the

integrated visualization of textual requirements as well as graphical representations of

crucial interactions and use cases. The use and use of Essential in this situation were

examined in the paper.

An alternative user-centric technique known as Use Cases (EUCs) was established to

streamline the process of gathering and documenting requirements. This approach is shown

in Figure (4). However, due to a lack of proper tool support, EUCs are not frequently used in

practice. When attempting to effectively determine the relevant "essential" needs (abstract

interactions), requirements engineers face difficulties. Additionally, this extraction technique

http://www.minarjournal.com/

Volume 5, Issue 3, September 2023

9

www.minarjournal.com

was unsuccessfully integrated into the Marama Essential tool for EUC Diagrams, which was

created using the Marama meta-tool.

Figure4. Capturing requirements using an Essential Use Case

 Despite its limitations, this study supports earlier results addressing the challenges

involved in incorporating natural language needs into EUC models. It is crucial to remember

that this tool cannot guarantee perfect accuracy owing to linguistic complexity and the

frequent occurrence of inaccurate or lacking text requirements. Utilizing round-trip

engineering between natural language and EUC model requirements, further assistance is

also required in spotting inconsistencies, incompleteness, and redundancies. In addition,

the classification in Figure (5) is merely divided into two portions, and no graphics or

references to particular methods or classification procedures are included.

Figure5. Performing an essential interaction extraction to a EUC model and supporting

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

10

www.minarjournal.com

An analysis of an automated method for finding errors in software requirement

specifications was done [20], with an emphasis on finding confusing SRS written in the

Malay language. The replies of the participants and Malaysian industry software

development were utilized to create the dataset for the study. It is important to note that

English has been the primary subject of most of the existing research in this area. The

research also emphasizes the difficulties created using the restricted use of boilerplates in

requirement formulation, which makes requirement testing and evaluation even more

challenging. It is crucial to note that this study serves just as an experimental benchmark.

In [20], a thorough examination of an automated method to spot mistakes in software

requirement specifications was carried out, with an emphasis on spotting unclear SRS

written in the Malay language. The information used in the study was obtained from

participant answers and industry practices for software development in Malaysia. It is

important to note that the English language has been the focus of the majority of prior

studies in this area. The limitations of boilerplate usage in requirement formulation, which

make requirement testing and evaluation more difficult, are also highlighted in the study.

Recognizing that this study acts as an experimental benchmark to examine the efficiency of

the automated procedure is significant.

An automated prototype tool that provides writing capabilities for textual requirements

and supports consistency checks across these needs was provided [21]. The ability to

validate the consistency of their natural language requirements with other analytical and

design representations makes this tool an invaluable resource for requirement engineers

and business analysts. With the help of a series of Eclipse IDE plug-ins and the Marama

meta-tool set, the tool streamlines the processing of important use cases (EUC) for users,

notably requirement engineers. This method considerably decreases the amount of time

needed to create EUC models from textual natural language requirements, as shown in

Figure (6).

However, due to a lack of tool support, a lack of integration with other modelling

methodologies, and a lack of expertise among engineers in extracting crucial interactions

from requirements, the use of EUCs has been constrained. The automated tracing tool

mentioned in this context also has many shortcomings. It performs as a standalone tool and

does not interface with other software engineering or requirements tools, giving users fewer

benefits. The application also has some drawbacks, such as poor operation instructions and

a lack of a user-friendly visual interface. The tool's database needs to be improved with a

wider selection of terms from other fields. Finally, no UML diagram was created that used

Marama which has several limitations.

http://www.minarjournal.com/

Volume 5, Issue 3, September 2023

11

www.minarjournal.com

Figure6. Framework for extracting requirement

 In [22], the author provided an approach to generating UML use cases and class

diagrams from the functional requirement texts using natural language processing and

machine learning. The proposed system is capable of providing solutions to generating use

cases and class diagrams from the functional requirement text using NLP and ML

techniques The Plant UML tool, which makes use of its plain text language and allows for

user participation, was used to create the diagrams for this study. The strategy of [23],

contrasts with this one in that it focuses on a rule-based strategy to automatically produce

UML use case diagrams from functional requirements text or user stories. The prototype

created for this study is capable of reading and analyzing functional requirements supplied

in texts written in English and automatically producing use case diagrams and class

diagrams. It is crucial to highlight that this paper lacks illustrations and in-depth talks that

would have improved the technique and outcomes. In essence, it may be viewed as a

synthesis or combining of earlier contributions to the subject. In [24], GeNLangUML

(Generating Natural Language from UML), a technique the researchers described, intends to

produce English specifications from UML class diagrams. An academic case study was used

to independently test the Java-based system. For the syntactic analysis of the input names

and the sentence-generation verification, WordNet was used in the study. It should be

emphasized that these methods' usefulness is restricted to particular domain applications.

To put it another way, the researchers found some shortcomings in the other two

frameworks that they tried to remedy in the Somerville framework. The user's

comprehension of their system needs and preferences as well as the issue area in which the

system will be deployed are both taken into consideration in this framework.

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

12

www.minarjournal.com

 The authors developed a prototype solution for their article [25] that helps with the

extraction of Essential Use Case (EUC) models from natural language requirements and aids

the management of traceability and consistency across these models. The toolkit, which is

implemented in Java within the Eclipse IDE, enables collaboration between requirements

engineers, end users, and other developers utilizing diagrammatic and textual EUC models.

It's vital to note that additional UML diagrams like interaction diagrams, state diagrams, and

activity diagrams are not included in this toolbox.

 To reduce manual work and produce high-quality use case scenarios (UCS), the

authors of the article [26] developed a methodical technique that automates the extraction of

different use case parts from textual issue descriptions. Using NLP approaches, the strategy

entails creating a template for an intermediate use case and then creating questions

depending on the data that was analyzed. POS tags, Type Dependencies (TDs), and semantic

roles are extracted from the input text specification using NL parsing and utilized to

populate the use case components. The findings show that the information provided is

precise, consistent, non-redundant, and thorough, offering a useful support to use case

developers for additional analysis and documentation. To enhance the work and its

outcomes, this work does not contain any diagrams or discussions. To put it another way, it

is only a synthesis of earlier efforts.

 In [27] presents a method and supporting tool that allows natural language and semi-

formal requirements models to be checked semi-automatically. This tool makes it easier to

maintain consistency and analyze correctness and completeness. To assess the precision

and thoroughness of the semi-formal representations, the researchers also put forth the

idea of key use case interaction patterns. It is crucial to keep in mind that the technology

mentioned, Marama AI is specially made to find contradictions in official specifications and

might not be appropriate for doing so in other kinds of requirements papers, such as those

written in normal language. The technique does not make use of any additional UML

diagrams, such as interaction diagrams, state diagrams, or activity diagrams. Marama Meta

Tools analysis depends on the quality of the input data, therefore if the data is inaccurate or

inadequate, differences might not be noticed. Additionally, just two fields of needs are

classified in the technique, potentially leaving out other crucial factors.

 Requirement Engineering Analysis & Design (READ), is a system developed by

researchers in [28], that creates a UML class diagram using NLP and domain ontology

approaches. They suggested a tool that uses the READ tool to demonstrate how NLP and

domain ontology approaches may be used to extract UML diagrams from informal NL

requirements. The system's accuracy has to be improved, and its ability to produce

additional UML diagrams such as use case diagrams needs to be expanded. The extraction

of multicity, aggregation and generalization links also needs to be improved. Additionally, it

must be possible for editable source code to be generated automatically from the retrieved

drawings.

http://www.minarjournal.com/

Volume 5, Issue 3, September 2023

13

www.minarjournal.com

 In [29] describes a method for deriving UML diagrams from NL textual requirements

and expediting the examination of NL requirements. The method uses heuristic principles

and NLP approaches to build use-case and activity diagrams. It was put to use in a case

study and tested in an experiment. It should be emphasized that the development of specific

use case connections, such as inclusion and extending, is not addressed in the suggested

technique. To improve the system's functionality and speed, it is also recommended to

include more rules that are particular to information systems domains. The strategy might

further benefit from making use of a variety of NL papers and running additional case

studies to confirm its efficacy. Its probable failure to reliably capture the precise meaning

and purpose communicated in the input text is another shortcoming of the READ

implementation of NLP. Furthermore, the program could require a significant quantity of

training data to work at its best, which could be a time-consuming and expensive

procedure. It is crucial to remember that the accuracy of this method, which is focused

particularly on creating class diagrams, depends on how well text analysis works and the

methodologies used.

3. Discussions

 Following the literature review that was done for this study, earlier efforts mostly

focused on creating UML class models from NL requirements. These studies outlined the

tools' limits and noted the difficulties still facing this field. They also looked at methods that

have been effective in creating UML diagrams and assessing informal NL requirements.

However, there was not much focus in these activities on improving the functionality and

performance of the systems. They used case studies and NL documents rather sparingly to

support their theories. Furthermore, a sizable portion of these papers lacked comments or

illustrations intended to enhance techniques and results. Moreover, other research

endeavors focused on the utilization of specific tools, which were found to have several

limitations. For instance, these tools often operated as stand-alone systems without

integration with other requirements or software engineering tools, resulting in limited

benefits for users. Furthermore, these tools were often hindered by various restrictions,

such as lacking a user-friendly visual interface or unclear aspects that impeded user

comprehension of the tool's process and usage. In addition, the databases supporting these

tools required enhancement with a broader range of phrases from diverse domains. Notably,

no UML diagram was generated using the Marama tool, which also had its own set of

limitations. Moving forward, there is a clear intention to develop UML tools capable of

addressing most of these issues and supporting analysis across multiple languages. These

future tools are envisioned to offer notifications and language corrections to enhance the

user's requirements.

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

14

www.minarjournal.com

4. Conclusion

 In this research, the work is concentrate on analysing requirements based on the Use

Case Diagram, which is a more popular one in the UML diagram. Thus, it will support other

researchers in understanding and specifying the useful tools and mechanisms that can help

them to analyse the requirements through Natural Language Processing (NLP) based UML

diagrams. Besides, the aim was achieved based on related works, which proved that no UML

diagram was generated using the specific tool and has a set of limitations. Moreover, there is

a clear intention to develop UML tools capable of addressing most of these issues and

supporting analysis across multiple languages. These future tools have envisioned offering

notifications and language corrections to enhance the user's requirements. As a result, the

UML tools for addressing and analysing multiple languages are needed, as long as is

necessary in software engineering.

http://www.minarjournal.com/

Volume 5, Issue 3, September 2023

15

www.minarjournal.com

References

[1] Sanyal, R., & Ghoshal, B. (2018, June). Automatic extraction of structural model from

semi-structured software requirement specification. In 2018 IEEE/ACIS 17th International

Conference on Computer and Information Science (ICIS) (pp. 543-58). IEEE.

[2] N. Bashir, M. Bilal, M. Liaqat, M. Marjani, N. Malik, and M. Ali, ‘Modeling class diagram

using NLP in object-oriented designing’, in 2021 National Computing Colleges Conference

(NCCC), Taif, Saudi Arabia, 2021.

[3] M. Maatuk and A. Abdelnabi, ‘Generating uml use case and activity diagrams using NLP

techniques and heuristics rules’, in International Conference on Data Science, E-learning

and Information Systems 2021, 2021, pp. 271–277.

[4] Semenova, V. Tynchenko, S. Chashchina, V. Suetin, and A. Stashkevich, ‘Using UML to

Describe the Development of Software Products Using an Object Approach’, in 2022 IEEE

International IOT, Electronics and Mechatronics Conference (IEMTRONICS), IEEE, 2022,

pp. 1–4.

[5] S. Ahmed, A. Ahmed, and N. U. Eisty, ‘Automatic transformation of natural to unified

modeling language: A systematic review’, in 2022 IEEE/ACIS 20th International Conference

on Software Engineering Research, Management and Applications (SERA), Las Vegas, NV,

USA, 2022.

[6] E. A. Abdelnabi, A. M. Maatuk, T. M. Abdelaziz, and S. M. Elakeili, ‘Generating UML

class diagram using NLP techniques and heuristic rules’, in 2020 20th International

Conference on Sciences and Techniques of Automatic Control and Computer Engineering

(STA), Monastir, Tunisia, 2020.

[7] R. G. Alsarraj, A. M. Altaie, and A. A. Fadhil, ‘Designing and implementing a tool to

transform source code to UML diagrams’, Period. Eng. Nat. Sci. (PEN), vol. 9, no. 2, p. 430,

Mar. 2021.

[8] A. Chakraborty, M. K. Baowaly, A. Arefin, and A. N. Bahar, ‘The role of requirement

engineering in software development life cycle’, Journal of emerging trends in computing

and information sciences, no. 5, 2012.

[9] S. Gulia and T. Choudhury, ‘An efficient automated design to generate UML diagram

from Natural Language Specifications’, in 2016 6th International Conference - Cloud System

and Big Data Engineering (Confluence), Noida, India, 2016.

[10] P. More and R. Phalnikar, ‘Generating UML diagrams from natural language

specifications’, Int. J. Appl. Inf. Syst., vol. 1, no. 8, pp. 19–23, Apr. 2012.

[11] S. Yang and H. Sahraoui, ‘Towards automatically extracting UML class diagrams from

natural language specifications’, arXiv [cs.SE], 25-Oct-2022.

[12] F. Alharbia, S. R. Masadeh, and F. Alshrouf, ‘A Framework for the Generation of Class

Diagram from Text Requirements using Natural Language Processing’, International

Journal, no. 1, 2021.

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

16

www.minarjournal.com

[13] Z. A. Hamza and M. Hammad, ‘Generating UML use case models from software

requirements using natural language processing, in 2019,8th International Conference on

Modeling Simulation and Applied Optimization (ICMSAO

[14] A. Alashqar, ‘Automatic generation of UML diagrams from scenario-based user

requirements’, Jordanian J. Comput. Inf. Technol., no. 0, p. 1, 2021.

[15] M. Ring, J. Stoppe, and R. Drechsler, ‘UMLAUT: Synthesis of Natural Language from

Constrained UML Models’, in Workshop on Design Automation for Understanding Hardware

Designs, 2018.

[16] M. Elallaoui, K. Nafil, and R. Touahni, ‘Automatic transformation of user stories into

UML use case diagrams using NLP techniques’, Procedia Comput. Sci., vol. 130, pp. 42–49,

2018.

[17] D. K. Deeptimahanti and R. Sanyal, ‘Semi-automatic generation of UML models from

natural language requirements’, in Proceedings of the 4th India Software Engineering

Conference, Thiruvananthapuram Kerala India, 2011.

[18] D. K. Deeptimahanti and M. A. Babar, ‘An automated tool for generating UML models

from natural language requirements’, in 2009 IEEE/ACM International Conference on

Automated Software Engineering, Auckland, New Zealand, 2009.

[19] M. Kamalrudin, J. Grundy, and J. Hosking, ‘Tool support for essential use cases to

better capture software requirements’, in Proceedings of the IEEE/ACM international

conference on Automated software engineering, Antwerp Belgium, 2010.

[20] M. H. Osman and M. F. Zaharin, ‘Ambiguous software requirement specification

detection: An automated approach’, in Proceedings of the 5th International Workshop on

Requirements Engineering and Testing, 2018, pp. 33–40.

[21] M. Kamalrudin, Automated support for consistency management and validation of

requirements (Doctoral dissertation). ResearchSpace@ Auckland, 2011.

[22] K. D. Arachchi, AI-Based UML Diagrams Generator (Doctoral dissertation). 2022.

[23] C. R. Narawita and K. Vidanage, ‘UML generator-an automated system for model driven

development, in 2016

 sixteenth International Conference on Advances in ICT for Emerging Regions (ICTer), IEEE,

2016, pp. 250–256

[24] F. Meziane, N. Athanasakis, and S. Ananiadou, ‘Generating Natural Language

specifications from UML class diagrams’, Requir. Eng., vol. 13, no. 1, pp. 1–18, Jan. 2008.

[25] M. Kamalrudin, J. Grundy, and J. Hosking, ‘Managing consistency between textual

requirements, abstract interactions and essential use cases, in 2010 IEEE 34th Annual

Computer Software and Applications Conference, Seoul, Korea (South), 2010.

[26] S. Tiwari, D. Ameta, and A. Banerjee, ‘An approach to identify use case scenarios from

textual requirements specification’, in Proceedings of the 12th Innovations on Software

http://www.minarjournal.com/

Volume 5, Issue 3, September 2023

17

www.minarjournal.com

Engineering Conference (formerly known as India Software Engineering Conference), Pune

India, 2019.

[27] M. Kamalrudin, J. Hosking, and J. Grundy, ‘Improving requirements quality using

essential use case interaction patterns’, in Proceedings of the 33rd International Conference

on Software Engineering, Waikiki, Honolulu HI USA, 2011.

[28] N. Bashir, M. Bilal, M. Liaqat, M. Marjani, N. Malik, and M. Ali, ‘Modeling class diagram

using NLP in object-oriented designing’, in 2021 National Computing Colleges Conference

(NCCC), Taif, Saudi Arabia, 2021.

[29] M. Maatuk and A. Abdelnabi, ‘Generating uml use case and activity diagrams using

NLP techniques and heuristics rules’, in International Conference on Data Science, E-

learning and Information Systems 2021, 2021, pp. 271–277.

http://www.ijherjournal.com/

