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Abstract: 

In this paper, a novel numerical method has been outlined for finding a novel solution to non-

linear Volterra integral (NLVI) equation of second type, besides, two kernel type of this 

equation. Touchard polynomials (TPs) and to different degrees were used for this purpose. The 

function of approximation was obtained to derive the technique for solving this type of integral 

equations. Three numerical examples were provided to demonstrate the importance of the 

method used and the accuracy of the extracted results. In some examples, the results were 

compared with those of another method. The MATLAB R2018b program was used to carry out 

all calculations and generate all graphics. 
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1. Introduction 

Numerous scientific disciplines, including population dynamics, the spread of diseases, 

and semiconductor devices, are affected by nonlinear Volterra integral equations. Volterra 

began experimenting with integral equations in 1884, but his earnest research didn't start 

until 1896. Du Bois-Reymond gave the integral equation its name in 1888. Lalesco, however, 

was the one who gave the Volterra integral equation its name in 1908. (Abdul-Majid, W. A. Z., 

2011). The (NLVI) equation enters many fields of theoretical and applied scientific knowledge 

such as: electrical applications in elasticity, plasticity, heat transfer, oscillation theory, fluid 

dynamics, control issue, and electrostatics (Polyanin, A. D.; Manzhirov, A. V., 2008). A great 

deal of researchers and scientists are interested in solving the (NLVI) equation to obtain 

numerical solutions for it via numerous efficient techniques has been proposed, these include: 

fourth order block by block method with Simpson's rule (Kasumo, C., ; Moyo, E., 2020), 

Bernstein polynomial method (Rani, D.; Mishra, V. 2019), the bound on a solution (Ramm, A. 

G., (2019), M-iteration method (Udo, M. O. et al.,2022), Taylor series expansion (Nadir, N. N., 

2020), a successive approximation method (Maleknejad, K. et al., 2016), Variational iteration 

method (Al-Saar, F. M. and Ghadle, K. P., 2019), Newton-Raphson formula (Rani, D., and 

Mishra, V., 2018). 

The standard form of the (NLVI) equation of 2nd type is (Abdul-Majid, W. A. Z., 2011) 

γ(ε) = β(ε) +  ∫ δ(ε, ρ) K(γ(ρ)

ε

0

)dρ  , ε ∈ [x, c]                                           ⋯ (1.1) 

for this type of equations, the kernel δ(ε, ρ) and the function γ(ε) are given real valued 

functions and K(γ(ε)) is a nonlinear function for γ(ε). 

 

2. Method Description 

Let's start by defining Touchard polynomials, which were the subject of study for French 

mathematician Jacques Touchard. A binomial-type polynomial sequence makes up Touchard 

polynomials, which are defined on [0, 1] (Nazir, A. et al., 2014; Abdullah, J. T., 2021) as 

follows: 

 

Sω(ε) = ∑ I(ε,

ω

h=0

h)εh = ∑ (
ω

h
)

ω

h=0

εh ,   (
ω

h
) =

ω!

h! (ω − h)!
                       … (2.1) 

 

where the degree and index of the (TPs), respectively, are ω and h. 

Below are the first five of these polynomials: 

S0(ε)=1 

S1(ε)=1+ε 

S2(ε)=1+2∈+ε2 

S3(ε)=1+3ε+3ε2+ε3 

S4(ε)=1+4ε+6ε2+4ε3+ε4 

 

2.1. Function of Approximation 

The linear combination γω(ε) of Touchard bases is defined as an approximate solution 

to Eq. (1.1) as follows: 

γω(ε) = u0S0(ε) + u1S1(ε) + ⋯ + uωSω(ε) = ∑ uhSh

ω

h=0

(ε), 0 ≤  ε ≤ 1… (2.2) 
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the function {Sh(ε)}h=0
ω   are Touchard basis of ω-th degree, as stated in Eq.(2.1), also 

uh (h = 0,1, … ,ω) represents the unidentified Touchard parameters will be subsequently. 

Equation (2.2) written as a dot product: 

 

γω(ε) = [S0(ε)   S1(ε) … Sω(ε)] .  

[
 
 
 
 
u0

u1
.
.
.

uω]
 
 
 
 

        ,   … (2.3) 

Eq.(2.3) is expressed as: 

γω(ε) = [1  ε  ε2 …εω].

[
 
 
 
 

α00      α01       α02     … α0ω 
 0         α11       α12      ⋯ α1ω  
 0         0            α22     ⋯ α2ω  
⋮            ⋮          ⋮  ⋱               ⋮   

  0     0           0             ⋯ αωω  ]
 
 
 
 

.

[
 
 
 
 
u0

u1
.
.
.

uω]
 
 
 
 

 , …  (2.4) 

where the known parameters αhh (h =  0, 1, 2, … , ω)   are used to calculate Touchard 

coefficients. In this case, the matrix is square and non-singular. 

 

3. Solution the (NLVI) equation of 2nd type 

Given that Eq. (1.1) has the following form 

 

γ(ε) = β(ε) +  ∫ δ(ε, ρ) K(γ(ρ)

ε

0

)dρ  ,                                             ⋯ (3.1) 

Using Eq. (2.4), suppose that: 

 

γ(ε) = γω(ε) = [1  ε  ε2 … εω].

[
 
 
 
 

α00      α01       α02     … α0ω 
 0         α11       α12      ⋯ α1ω  
 0         0            α22     ⋯ α2ω  
⋮            ⋮          ⋮  ⋱               ⋮   

  0     0           0             ⋯ αωω  ]
 
 
 
 

.

[
 
 
 
 
u0

u1
.
.
.

uω]
 
 
 
 

 , …  (3.2) 

 

Putting Eq. (3.2) into Eq. (3.1) produces the following 

 

[1  ε  ε2 …εω].

[
 
 
 
 

α00      α01       α02     … α0ω 
 0         α11       α12      ⋯ α1ω  
 0         0            α22     ⋯ α2ω  
⋮            ⋮          ⋮  ⋱               ⋮   

  0     0           0             ⋯ αωω  ]
 
 
 
 

.

[
 
 
 
 
u0

u1
.
.
.

uω]
 
 
 
 

= β(ε) + ∫δ(ε, ρ) [1  ρ  ρ2 … ρω]

ε

0

.

[
 
 
 
 

α00      α01       α02     … α0ω 
 0         α11       α12      ⋯ α1ω  
 0         0            α22     ⋯ α2ω  
⋮            ⋮          ⋮  ⋱               ⋮   

  0     0           0             ⋯ αωω  ]
 
 
 
 

.

[
 
 
 
 
u0

u1
.
.
.

uω]
 
 
 
 

dρ… (3.3) 

then, the integral in Eq.(3.3) (Mustafa and AL Zubaidy, 2011; Zarnan, 2019) can be 

calculated by putting  κ = κδ, ( δ = 0,1, … ,ω) in Eq. (3.3), where κδ = r + δλ, and spacing  λ =
c−x

ω
,  

Consequently, an algebraic equation system that is nonlinear is created. The solution to this 
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system was using “Newton’s iterative method”. The coefficients (u0, u1, … , uω) are obtained, and 

then substituted into Eq. (2.2) to get the approximate numerical solution of Eq. (1.1) 

 

4. Convergence Analysis: 

The solution accuracy (Kurt et al., 2013; Biçer et al., 2018) of the (NLVD) equation of 

second type second type can be obtained as below: The truncated Touchard series in Eq. (2.2) 

must be basically satisfied Eq. (1.1). Consequently, for each ε = εh ∈ [x, c], h = 0, 1, 2, … , ω, the 

error functions 

Er (εh) = |∑ uhSh

ω

h=0

(ε) − β(εh) − ∫ δ(εh, ρ) 

εh

0

∑ uhSh(ρ)

ω

h=0

dρ | ≅ 0, then, 

  the Er (εh)  ≤∈,  for each εh in the given interval [x, c] and ∈ > 0, the truncation limit ω is then 

increased until the Er (εh) decrease in size enough. The error function can be calculated using 

the equation shown below: 

Er (ε) = ∑ uhSh

ω

h=0

(ε) − β(ε) − ∫δ(ε, ρ) 

ε

0

∑ uhSh(ρ)

ω

h=0

dρ  , 

When Er𝜔  (ε) → 0,  the value of ω is sufficiently high, the error gradually decreases and 

then Er (ε) ≤∈. 

 

5. Numerical Illustrations 

The proposed approach is tested in this section by examining three examples of the 

(NLVI) equation. The accuracy of the solution approach was evaluated using the absolute 

error. The following was stated as the general formula: 

Absolute error= |γ(εh) − γω(εh)|, εh∈[0,1] and h = 0, 1, … ,ω where  γ(εh)  and  γω(εh)  are the 

exact and approximate solutions of the (NLVI) equations, respectively. 

 

Example1: Consider the (NLVI) equation given in (D. Rani, and V. Mishra, 2018). 

 

γ(ε) = 2ε − (
1

12
)ε4 + 0.25∫ (ε − ρ)γ2(ρ)

ε

0

dρ ,    0 ≤ ε ≤ 1 

with the exact solution function is γ(ε) = 2 ε.  Applying the presented method and 

selecting the points ε0 = 0.1 and ε1 = 0.2 in the [0, 1]. The nonlinear system in Eq. (3.3) can be 

solving for ω= 2 by “Newton’s iterative method” and “MATLAB R2018b” to get Touchard 

parameters, after substituting these parameters into   Eq. (2.2). The approximate solution 

obtained is the same as the exact solution function given in the example which is as follows: 

γ2(ε) = −2S0(ε) + 2S1(ε) + (0)S2(ε) = 2 ε. 

The reference (D. Rani, and V. Mishra, 2018) is obtained 0.003 as the maximum 

absolute error by using Newton-Raphson formula. As a result, our suggested method performs 

better. The comparison with the exact solution for ω=2 is shown in Figure1. 
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Figure1: Comparison of Solutions, ω=2 for Example1. 

 

Example2: Consider the (NLVI) equation given in (H. Erfanian  and  T.  Mostahsan, 2018) 

 

γ(ε) = ex p(ε) −
1

2
 (exp(2𝜀) − 1) + ∫γ2(ρ)

ε

0

dρ       0 ≤ ε ≤ 1     , 

with the exact solution function is γ(ε) = exp (ε). 

Now, after applying the presented method for ω=2, 3 and 5, approximate numerical 

solutions are obtained respectively as follows: 

γ2(ε) = (6.4672e − 01)S0(ε) + (−2.6738e − 01)S1(ε) + (6.2207e − 01) S2(ε) 

γ3(ε) = (2.8104e − 01)S0(ε) + (6.4419e − 01)S1(ε) + (−1.3290e − 01)S2(ε) + (2.0762e − 01)S3(ε). 

γ5(ε) = (2.5879e − 01)S0(ε) + (9.5934e − 01)S1(ε) + (−1.0496))S2(ε) + (1.3031))S3(ε) + 

(−5.8881e − 01))S4(ε) + (1.1720e − 01))S5(ε) . 
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Tables 1 and 2 compare the approximate solutions and absolute error, respectively, 

demonstrating that the results' accuracy increases as ω increases. Also the comparison with 

the exact solution function for ω=2, 3, and 5 are shown in Figure2. 

Table1: Exact & Approximate Solutions of Example2. 

ε Exact 

solution 

Approximate 

solution, ω=2 

Approximate 

solution, ω=3 

Approximate 

solution, ω=5 

0.0 1.0000e+00 1.0014e+00 9.9995e-01 1.0000e+00 

0.1 1.1052e+00 1.1053e+00 1.1052e+00 1.1051e+00 

0.2 1.2214e+00 1.2216e+00 1.2215e+00 1.2210e+00 

0.3 1.3499e+00 1.3504e+00 1.3500e+00 1.3485e+00 

0.4 1.4918e+00 1.4916e+00 1.4921e+00 1.4887e+00 

0.5 1.6487e+00 1.6453e+00 1.6490e+00 1.6433e+00 

0.6 1.8221e+00 1.8114e+00 1.8219e+00 1.8144e+00 

0.7 2.0138e+00 1.9900e+00 2.0121e+00 2.0047e+00 

0.8 2.2255e+00 2.1809e+00 2.2208e+00 2.2181e+00 

0.9 2.4596e+00 2.3844e+00 2.4493e+00 2.4590e+00 

1.0 2.7183e+00 2.6002e+00 2.6988e+00 2.7333e+00 

 

 

Table2: Approximate Numerical Results of Example2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

ε 

A  B  S  O  L  U  T  E     E  R  R  O  R S 

ω=2 ω=3 ω=5 

0.0 1.4100e-03 5.0000e-05 2.0000e-05 

0.1 1.3578e-04 1.1302e-05 2.1767e-05 

0.2 2.4204e-04 5.6602e-05 3.9727e-04 

0.3 5.6549e-04 1.6833e-04 1.3850e-03 

0.4 1.7950e-04 3.0658e-04 3.1111e-03 

0.5 3.4138e-03 2.9623e-04 5.4219e-03 

0.6 1.0708e-02 1.8728e-04 7.7573e-03 

0.7 2.3796e-02 1.6336e-03 9.0260e-03 

0.8 4.4598e-02 4.7151e-03 7.4819e-03 

0.9 7.5232e-02 1.0306e-02 6.0298e-04 

1.0 1.1804e-01 1.9502e-02 1.5028e-02 
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Figure2: Comparison of Solutions, ω=2, 3, 5 for Example2. 

 

 

Example3: Consider the (NLVI) equation given in (D. Rani and V. Mishra, 2019): 

 

γ(ε) =
1

4
+

ε

2
+ ex p(ε) −

exp(2ε)

4
+ ∫(ε − ρ)γ2(ρ)

ε

0

dρ ,    0 ≤ ε ≤ 1 

with the exact solution function is γ(ε) = exp(ε)   . 

by applying the presented method for ω=2, and 3, approximate numerical solutions are 

obtained respectively as follows: 

γ2(ε) = (6.5283e − 01)S0(ε) + (−2.7915e − 01)S1(ε) + (6.2764e − 01) S2(ε) 

γ3(ε) = (2.1469e − 01)S0(ε) + (8.5120e − 01)S1(ε) + (  −3.3836e − 01)S2(ε) + (2.7129e − 01)S3(ε) 

Tables 3 and 4 compare the approximate solutions and absolute error, respectively, 

demonstrating that the results' accuracy increases as ω increases. Also the comparison with 

the exact solution function for ω=2, and 3 are shown in Figure3. 
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Table3: Exact & Approximate Solutions of Example3. 

ε Exact 

solution 

Approximate 

solution, ω=2 

Approximate 

solution, ω=3 

0.0 1.0000e+00 1.0013e+00 9.9882e-01 

0.1 1.1052e+00 1.1052e+00 1.1027e+00 

0.2 1.2214e+00 1.2217e+00 1.2177e+00 

0.3 1.3499e+00 1.3506e+00 1.3454e+00 

0.4 1.4918e+00 1.4922e+00 1.4876e+00 

0.5 1.6487e+00 1.6463e+00 1.6458e+00 

0.6 1.8221e+00 1.8129e+00 1.8216e+00 

0.7 2.0138e+00 1.9922e+00 2.0167e+00 

0.8 2.2255e+00 2.1839e+00 2.2327e+00 

0.9 2.4596e+00 2.3882e+00 2.4713e+00 

1.0 2.7183e+00 2.6051e+00 2.7340e+00 

 

Table4: Approximate Numerical Results of Example3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ε 

A  B  S  O  L  U  T  E     E  R  R  O  R S 

ω=2 ω=3 

0.0 1.3200e-03 1.1800e-03 

0.1 3.8482e-05 2.4895e-03 

0.2 2.4884e-04 3.7220e-03 

0.3 7.8779e-04 4.4131e-03 

0.4 3.6970e-04 4.2205e-03 

0.5 2.4263e-03 2.9375e-03 

0.6 9.1704e-03 5.0656e-04 

0.7 2.1598e-02 2.9647e-03 

0.8 4.1627e-02 7.1860e-03 

0.9 7.1378e-02 1.1665e-02 

1.0 1.1319e-01 1.5688e-02 
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Figure3: Comparison of Solutions, ω=2, and 3 for Example3. 

 

6. Conclusions 

In this work, the approximate numerical solution of the (NLVI) equation was determined 

using the Toucard method. The results reached in this technique indicate that the presented 

method was effective. Comparing the approximate numerical results with the given exact 

solution function and another method shows that the results are very well corresponded to 

as shown in the tables and figures. 
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