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Abstract

We are emplying tanh function of family D_p”e of convex functions in U be introduced and
investigated. The major support of this paper deals the derivations of squeaky inequalities
which involve Taylor- Maclaurin cofficients for functions that attributed to class [ D] _o”e of
convex function in U. In private, the bounds of first three coefficients of Taylor- Maclaurin
series and the estimates of second-and third-order Hankel determinant say, HD_2,2 (f) and
HD_3,1 (f) respectively and the estimates of the Fekete-Szego functionals are the major aim
for our study in this paper.
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Introduction
Suppose we have a functions f with class g ,where f is analytic function and attributed

to open unit disk U = {z € C: |3| < 1}, which takes the following form:
f(z) =z+a,z*+asz*+,z€0. (1.1)

Suppose we have a univalent function of  , assume g is subclass of g ,and assume F

is analytic function (L) class where its normalized is given by:
L(z)=1+S,2+S,5% + S35+ -, (1.2)
and holds the below inequality
Re(L(2)) > 0,z € V.
Suppose we have two functions f and g, where both are analytic function in U .
Therefore, g is subordinate of the function f, which is given by

f(z) < g9(z),z €0, if the Schwarz function w(z) exists, with |[w(z)| <1 and w(0) =0
[see more [21]], g(z) = f(w(2)),z €D .

We introduced the new class.

Definition (1.1): suppose that the function f € % that taken the formula (1.1) is called

to be new subfamily say class Dj involving convex function:

2" (2)
()

®g={1+ <1+tanhz,fego,zeU}. (1.3)

In the other words, we present the hyperbolic function:

Y(z) = 1+ tanhz,Pp(0) =1 and Re(¥(z)) >0 .f € Dy iff there exists a holomorphic

function q , q(3) < q¢(3) =1+ tanhz , where

f = gels ) (1.4)

consider the q(z) = qo(g) =1+ tanhz  we get from (1.4) thective a function of the

extremal function which is taken in many problems of the class®j , is given by:

£, = zells™ T )
Z3 4

= + 2+—+—+"'.
FTE TS T

The q'"* Hankel determinant had been stated by Noonan and Thomas [23] in 1976 where

g=1 and n>1 of functions f given below.
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a, Qg1 0 Opgg-1
Ot L) Ontq
H:Dq,n(f)= : H : ) 1=1'
an+q—1 an+q an+2q—2

In particular, we have

For g=2,n=1anda; =1, HD,;(f) =a3;—aj is the well-known Fekete-Szego
functional. HD,,(f) = aya, —aj for q =2, n=2 denoted by the second Hankel and study the
two classes bi-(convex and starlike) functions (see[1,2,3,4,5,9,10,12,15,16,25,31]). The third

Hankel determinant is given as:

a; a as
H®3,1(f)= 02 03 (14 ’q1=3rn=1 )
a; a, as

where elements of the previous determinant are different classes of analytic functions

which equivalent [6,7,8,11,12,13,17,18,20,22,27,28,29,30,32,33,34].
2. Preliminaries:

Lemma(2.1)[ 19]: Suppose B(z) € # , thus there exists some z, X together with , [X| <
1,]|z] < 1,such that

28, = S2 + X4 —S?).
48, = S+ 25, X(4-SH) - (4 -$SH)S; X2 +2(4 —-SH1 - | XDz .
and

8S, = St + X[S(X? —3X +3) +4X](4 —$H) —4(4 - SHA — [X|DHX[S(X —1DE+XE— (1 —
1ED¢] (4 — $2)

Lemma(2.2) [26]: Suppose B(z) € & . Thus

ISt + S3 + 2S,v; — 3S2S, — Sul < 2,

IS5 + 3S,S2 + 3S2S, — 4S3S, — 2S,S, — 25,85 + Ss| < 2,

IS¢ + 6S2S2 + 4S3S, + 2S,Ss + 2S,S, + S2 — S3 — 5SS, — 3S2S, — 6S,5,S; — S| < 2,
IS,| < 2wheren=123,... .

Lemma (2.3) [24]: Suppose B(z) € g , thus

2
S1

§2
|§2_7 <2_&

= 2 )

|§n+k_C§fnSk|S2: 0S6317

|§n+2k - (Snglzcl < 2(1 + 2() .
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3. Main Results :

Now we present the prove and statement to our theorems as a part of our work.

Theorem (3.1): Suppose that f € Dj and be taken formula (1.1), thus

1 1 1
|a2|SE ,|a3|Sg ,|a4|SE .

(3.1)

Proof : Suppose f € D and Zj]:,—(g) =1+ tanh(w(z)) , such that,
1+ % =1+ 2a,5 + (6a; — 4a2)z% + (12a, — 180,03 + 8a3)z°% +

(20as — 18a2 — 32a,a, + 48aZa; — 16a3)a* .

(3.2)

Suppose p(z) € p(z),in the some conditions for Schwarz function w(z) ,

1+ w(z)
p(3) = T—w®
consider that p(z) € F
and
w(z) = P(E)=1 _  S15+S522°+S32%+

On the other side,

2
1+ tanh(w((z)) =1+ %Slz + (%— i—l)zz + (

14p(z)  2+1+S15+8,22 45353+

(3.3)

st

12

=1+ §1Z + SZZZ + S3Z3 + -

_ 518 +.§i) Z3 +.(§i +.E§i§£

2 2 2 16

Comparing the coefficients of z,3?, ..., 3° between equations (3.2) and (3.3) and by using

lemma (2.2 ) we have :

1
<=
la,| < 2
1
|a3| < E’

_Ss_Si_siSe _L[ _
lag| = 24 288 96| 24 S3
§2

S(z—%)
< — 4N "/
|a4|_12+ 144 °
Also ,let

222

S1S2
4

]+

S1
144

5

_si

4
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1
7r(§)—;+ 144
, 1 3§82
Vs (S) =5+E

Put, 7'(S) = 0 ,we have S = % and so 7(S) has a maximum value attained at § = 13 ,also

which is

2 1
< =) ==
log| < n(«/?) 12"

Theorem (3.2): Suppose that the function f € Dj and be taking by (1.1), then :

1
- < =
lazas —au| < 12

zf'"(@) _

Proof : suppose f € Dg and i = 1+ tanh(w(32)) , such that,
1+ % =1+ 20,5 + (6a; — 4a2)z2 + (12a, — 18a,a; + 8a3)z3 +
(20as — 18a2 — 32a,a, + 48a%a; — 16a3)a* . (3.4)

Suppose p(z) € p(z),in the some conditions for Schwarz function w(z) ,

1+w(z
p(Z) = 1_—4/08 = 1 + §1Z + Szzz + §3Z3 + e
consider p(z) € F
and
w(z) = p(z)-1 _ S12+S3z%+S325+-

T 1+p(z) | 2+1+S15+S,52+83z3 4+

On the other side,
=141 S2 ST\, 2, (SI_$1S2, S5\ 3, (Sa 5SiS
o) =14 s (355 (1220 (50

12 2 2 16

+S%ﬁ_%_§)z4 (3.5)

2(12 = ESl 5 (3.6)
=s, , (3.7)

3
g =22l _S% (3.8)
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_ Sa Sfsz _S1S2 _ S5 | ST

. (3.9)
40 240 120 160 576

Taking the (19),(20)and (21), we get
laz0; — a4 < IS + 9S;S, — 12|
By taking Lemma (2.1) with S; = S € [0,1], to get

1
lazas — a4| < 51487 +3(4 — S5, X% — 6(4 — SH(1 — [X]HE]

Now, by using |{| < 1 and |X| = d < 1 and taking the tringle inequality,we have
1
la205 = ay] < 521457 +3(4 = $2)(S — 2)d* — 6(4 = )| = (S, d).

Now, differentiale (S, d) with respect to d and taking '(S,d) < 0 on the [0,2] X [0,1] .
Putd =0 to get

max{n(S,d)} = n(S,0) .to find

1
_ <—14%3 —6(4 — S| = .
lazas —ay| < 288| §° —6(4—5%)| =6&(S)

Taking G(S) = 0,to get S = 0,1 therefore S(S) has its maximum value at § = 0 ,also that

1 1
lazaz —ay| < 5(24) =15

In which the equality hold ,true for the extremal function as followes:

(Ioz(l+tantht3)—1dt>

f3=Z€
Z4 Z7 Zlo
=Z+?+E_1_62+m.

Theorem (3.3): Suppose that the function f € D7 and be taking by (1.1), then, we have
[HD,,(f)] < . (3.10)
Proof: Now, putting HD, ,(f) by formula:
HD,,(f) = laya, — a3
Taking the equations (3.6),(3.7)and (3.8), to get

1

laga, — o3| = ——=|-St - 38%S, — 12§,S; — 8S3] .
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By taking the two equations (3.6) and (3.7) in order to exact in terms of §; such that

$:=85(0<S<2 ,toget

8(4——§2)2X2
4

_7 304 — $2)S2X2 + 6S(4 — S2)(1 — |X|D)E —

21 1
| 4

laza, — a3 = 1152

By taking the tringle inequality and let € [0,2] , || < 1and |[X| =d < 1,to get

!
T 1152

= (S, d).

8(4-52)%a?
laza, — a§| %|

4
— T - 3(4 - §7)S%d? + 65(4 - $)(1 — d?) —

From equation above, differentiating with respect to d ,to get

9e(sd) _ 1 (3(4—§2)(§2—s§+12)a)
ad 1152 2 )

Now, we show that 2'(S,d) =0 on [0,1],also £(S,d) < £(S,1) .

Supposed =1, to obtain

Jay05 = af] = = [~ 25— 3(4 - $1)S2 - 4(4 - §9)?] = &(S).

1152 4

Taking &(S) < 0, where the function &(S) be a decreasing at point$ ,also S(S) has its

maximum value at § = 0 ,such that:

1
[HD,. (A <
In which the equality hold ,true for the extremal function as:

. Ze(f:(1+ta7ltht3)_1dt>
S =

3 5

_ 3 z 557
_z+7+?_1152+...' (3.11)

Theorem (3.4): Suppose that the function f € Dj and be taking by (1.1), then, we obtain
D3, ()] < — (3.12)

Proof: We can write the third-order Hankel determinants as follows:

HD; 1 (f) = 20,030, — ajas — a3 + azas — ai.

LetS; =S € [0,2] and applying (3.6), (3.7), (3.8), and (3.9) , to get

HDs3,(f) = ——[144S,S,S; + 276S1S, — 4145253 — 12965%S, +

192S3S, — 80S¢ — 912S3 + 1728S,S, + 1440S2] . (3.13)
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Let t=4—S§? , appling Lemma (2.1) and some computation. Then by taking simplified

from of this formulas ,to get
276S%S, = 138(S°® + S*X),

192S3S, = 48S° + 96SHX — 48SHX? + 96S3t(1 — | X|?)¢

207
2

41452S2 = 222 (S6 + 2S*X + S?2X2) |
1292S2S, = 162S*1X3 — 648 SHX (1 — |X[)&2 — 648S3Xt(1 — |X|2)¢E
—486S31(1 — |X|2)E + 486S*X + 162S° + 648S%tX2 |
144S,S,S; = —18S2tX2 — 18S*X2 + 51St2X(1 — |X|)¢ +
37S242X02 + 37S3(1 — | X|2)E + 18S° + 54S*X
91252 = 114(12X3 + 6S242X2 + 62S*X +S°),
1728S,S, = 108(11S2X2 + 111203 + S° + 114X + 11S3t(1 — | X[2)¢ +

11 S3(1 — | X|2)(1 = |€]12)T + 8S2X2% + 11SE2X (1 — |X|2)E +

111203 (1 — |X12) (1 — |€]2)7 — 8S*X2 — 11S2X (1 — | X|?)EB8SA2 X3 — 11 S (1 — |X|) &2
— 11822 (1 — | X|2)¢ —

11X (1 — | X])E2 + SHX3 — S22X?),

and

1440S% = 90S2t2X* — 360St>X (1 — |X|?)€ — 360S%t2 X3 — 180S*tX? +
360t2(1 — |X[?)%E%2 + 72082 (1 — | X|3)E + 360S3t(1 — [X]%)E +

360S%t2X? + 360S*tX + 90S° .

Now,put the equations above into (3.13) and simplifying,to get

1 907S°
829440 2

+ 519S2X0(1 — | X|2)E — 11433 + 118882X3(1 — |X]2) (1 — [€]2)T
+ 540S3X (1 — | X|2)E + 540 S (1 — |X[)E2 — 828 SL2X (1 — |X|2)E
— 1188X12X0 (1 — |X|)&% — 360t2(1 — | X|2)2E2 — 264SHX? — 853S22X2 — 5228223

HD; 1 (f) = +313$3t (1 — |X|?)& + 1188tX? — 540St2(1 — |X|*)(1 — |€]*)T

—1188S2%tX? + 90S%t2X* — 54S8*tX3 + 34S*tX ].
Let, t = (4 — $?),to get
HD; 1 (f) = ——[04(S,X) + 05(S, X) + 05(S, X) + (S, X, )71,

829440

www.minarjournal.com
226


http://www.minarjournal.com/

Volume 5, Issue 4, December 2023
Such that

01(S,X) = —2X (4 — S?)[3X (4 — S?)(—15S2X2 + 87S X2 + 142S? + 78X ) + 27S* X2 —

264S*X +17S* + 8528 X?%] + @,
(S, X) = —8(4 — $?)(1 — |X|?)S[(207X? — 520X) (4 — $?) — 1358*X — 39§82 ],
3(S,X) = —4(4 — SH(1 — |X|*)[(297X? + 90) (4 — S?) — 1355%X], and
he(S,2,8) = 4(4 —SH(A — | X121 — |€]?)[543(4 — S?)X — 135 §?].
Let{ <1 ,|X|=Xand|é|=+* , to get
HDs31(f) = —— [1071(S, 20| + |05(S, X) 1€ + o5 (S, 201 €% + |~(S, 2, O],

829440

1

< o Y8, X, 01, (3.14)
Such that
Y(S, X, ) = [61(S,X0) + £,(S, )2 + 65(S, X)) + 6,(S, 20 (1 — ¢?)], (3.15)

where

£.(S,X) = 2X(4 — SB)[3X (4 — $2)(—15S2X2 + 87S X2 + 142S% + 178X ) + 27S* X2 +

907S°

132S*X — 17S* + 5948 X?] — —

£,(S,X) =8(4—S*)(1 — |X|*)S[(—207X% — 65X) (4 — S?) + 135S*X + 39§52 ],
£4(S,X) = 4(4 - S)(1 — [X])(A — [§11)[543(4 — $H)X —135§?] ,

Suppose the closed cuboid be as follows:

»:[0,2] x [0,1],[0,1] .

To find the insid maxima points ,where contains twelve edges and six faces to maximize

the function Y(S, X, #) which defined by (3.15).
Now, we put three cases.

1.Suppose that§,X,¢ € (0,2) X (0,1) x (0,1) .By taking partial derivative of (3.15) with

respect to £ , to found the points of maxima insidey .

‘;—‘; =4[36(1 — X)[(X —5)(4 — $?) + 13552 ] + S(360X (4 — S?)(13 — X) + S? (540X + 313))],

(3.16)

now, we can find
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__ S[360X(4-S%)(X—13)-S%(540X—313)]

¢ 36(X-1)[(X-5)(4—S2)+135 §2]

Let ¢, be a critical point insidey ,thus ¢, € (0,1) , which is possible if

S[360X (4 — $?)(X — 13) — $3(540X — 313)] —=36(X — D[(1 - X)4 -S> -X) ] <
—4860(1 — X)S? . (3.17)

And

24(5-X)

$? > .
1530-X

(3,18)
To obtain the solutions in order to satisfying two both of inequalities (3.17) and (3.18).

Suppose that ,

24(5-X)
1530-X

6(X) = (3.19)

In the interval (0,1) the function 4(X) be decreasing where 4'(X) < 0 on (0,1). There is
no critical point of Y(S, X, ¢) in(0,2) x (0,1) x (0,1) . Where (3.17) does not hold true in this case
for all values of X € (0,1)

2. To find inside maxima points of the six faces of the cuboid y. .We put S =

0,Y(S, X, ?) ,we have
(X, =

—1900X3 + 4(1 — X?)(4752X2 + 1440)0* + 19008X (1 — X?)(1 — ¢2), (X,2€(0,1))
(3.20)

Now, in (0,1) x (0,1) the function 7; (X, ¥) has no optimal points since

"’Tlgf"” = 8(1 — X2)(4752X2 + 1440)£ + 38016 XL(1 — X2), (X, £ € (0,1)) .
(3.21)

Put §$ =2,Y(S, X, f) ,we have

Y(2,X,¢) = 29024 , (X,2€(0,1). (3.22)

Put X =2,Y(S, X, ) ,we have

907S°
2

6.0 =

+313(4 — S)SE + (4 — $?)(1440 + 360S2)#2 + S? (4 — $%) (1 — ¢?) .

(3.23)

Now, we solve (3.23) such that £ € (0,1) and S € (0,2) .

% =0 and % =0, on solvingw = 0 to obtain the points of maxima.
We have
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_ 313§2 .
T 2(1440S82-359)

4 . (3.24)
In (0,1) we have the range of ¢, ¢, , where
$>S,, S, =1.54572016538129 .

A computation shows that

9%,(S,¢) 0
s

Hence,we have
272182 — 1565S8*2 + 3756S8%¢ + 14365342 — 8S¢2 — 453 +85 =0 . (3.25)
Put equation (3.24) into equation (3.25) to get
$(2686.983S* — 170.085S> + 682.235S° + 402.973S + 17.15S? + 272 .844S° — 0.094) = 0.
(3.26)
We give the solution of equation (3.26) in (0,2) , that is ,
S = 1.1776484167107 . Therefore in(0,2) X (0,1) the equation 7, has no optimal point.
Put X = 1,Y(S, X, ?) ,we have
T3(S, £) = 3374S° — 11600S* + 2976S% + 17088 . (3.27)

Solving the equation

aT3(S,6)

35 0.

To get the critical points as follows
$=S, =0, S§; =0.369307722

Because S, be the minimum point of 75(S, £), 73 (S, £) attains it maximum value at §; ,

thatis , $ =17286.67112 .
Put £=0,Y(S, X, ?) ,we have
T,(S,X) =Y(S,X,0) =

9075°
2

17S* — 594$%X]

+ (8 — 2S2)X[(8 — 2S2)X(87S2X — 15S2X2 + 142S2 — 178X) + 27S*X2 — 132S*X +

+(8 — 282)(1 — X2)[297(4 — S?)X + 13582 ] .

The calculations shows that no solution of the following equations:
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ATy (SX)
ax

ATy (SX)

0 and 0,in(0,2) x (0,1) .

Put £=1,Y(S, X, ) ,we have

T (S, %) = Y(S,X,1) =

907S°
2

17S* — 594S%X]

+ (8 — 2S2)X[(8 — 2S2)X(87S2X — 15S2X2 + 142S? — 178X) + 27S*X2 — 132S*X +

+(32 = 8S)(1 — X2)S[(65X — 207X2)(4 — $?) + 135S2X + 39S?]
+ (32— 8SH)(1 — X2)[(297X2 + 90) (4 — $?) + 1355%X] .
The calculations shows that no solution of the following equations:

8T5(S,X) 8T5(S,X)
_— n: _— =
axX 0 and as

0,in(0,2) x (0,1) .
3. To found the maxima of Y(S, X, #)on the edges ofy. Put# =0 in, (3.23) we have

907S°
2

Y(S,0,0) = 1,(S) = — 1840S* + 166082 .

Nowni(S) =0 for S=n,=0 and S =n; =1.86233979316127 in [0,2],such thatn,be

minimum point and the maximum point of n,(S) is attained at n,(S) , we have,
Y(S,0,0) < 216.2934888 ,S € [0,1].
From (3.23) where £ = 1, we have

907S°®
2

Y(S,0,0) =1,(S) = —1080S° + 360S* + 4320S> — 2880S? + 5760 .

,be decreasing in [0,2], where ,73(S) <0 , S € [0,2] and hence the Now,7,(S)
Maximum is obtained at = 0 . therefore

Y(S,0,1) <5760 ,S € [0,1].

Let § = 0 in equation (3.23) , to obtain

Y(0,0,¢) < 576042, S € [0,1] .

A simple calculation gives

Y(0,0,¢) <5760, £€[0,1] .

From (3.27),we get

Y(S,1,1) = Y(S,1,0) = 15(S) = 3374S6 — 11600 S* + 247652 + 17088 .
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Now, § = n; = 0.334548402 in [0,2]and n5(S) =0 for S=n,=0 such thatn, be the
minimum point and the maximum point of n;(S) is satisfied by at #,(S) . Lead to the following

equation.
Y(S,1,1) =Y(S,1,0) < 17224.54141,S € [0,2] .
From equation (3.27) , where S§ = 0 to get
Y(0,1,¢) = 17088 .
From equation (3.22) ,we obtain
Y(2,0,4) =Y(2,1,¢) =Y(2,X,0) =Y(2,X,1) =29024 ,(X,¢€[0,1])
Let£ =0 in (3.20),to get
Y(0,X,0) =n,(S) = —17088X3 + 34176 X .

Now, X = X, = 0.81649658 in [0,1] where n,(S) = 0 such thatn, be increasing for X < X

and decreasing forX, <X . Thusn, has its maximum point at X = X,. This implies that.
Y(0,X,0) < 13952.29356, (X €[0,1]) .
From equation (3.20) and let£ =1, to get
Y(0,X,1) = ns(X) = 17088X3 — 3860X2 + 5760 — 19008X* .

Now, n5(X) is decreasing in [0,1] wherens(X) < 0 for [0,1] and then at lest maximum

value at X = 0 ,also
Y(0,X,1) =<5760,(X €[0,1]) .
Therefore , from the above cases, we have
Y(S,X,¢) <5760 ,0on[0,2] x [0,1] x [0,1] . (3.28)

From the two equations (3.14) and (3.28) we obtain

L [Y(S, X, 0)] < —.

HD;,(f) = 829440 144
If f € D ,thus the equality is carried out by the function represent by

z(1+tanht3)—1d

f2=Ze(0 ! t>

(3.29)
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