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Abstract 

In this research, we study stability of solutions with respect to the driver of a system of non-

linear Volterrs  integral  equations in reproducing Kernel Hilbert space. We study error    

estimate of solutions in terms of uniform grid numbers of subintervals of [a, b]. 

Furthermore, we use the reproducing kernel method to approximate the solutions of the 

problem. Finally, we give  some  examples to show the power of the method.  
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Introduction 

Non-linear integral equations has been used in numerous fields of science and 

engineering, including elasticity, mass transfer, oscillation theory, fluid dynamics, 

biomechanics, game theory, control theory, electrical engineering, and economics. Most of 

the time, there are different kinds of non-linear integral equations that cannot be worked 

out exactly, so it is best to approach them in an approximate way [1-9]. Therefore, many 

researchers studied and focused on different numerical techniques which can work out 

these integral equations. For instance, the authors presented the homotopy analysis method 

to solve the second kind of non-linear Fredholm and Volterra integral equations [1, 2], 

collocation method by [10], and singular integral equations and other numerical techniques 

presented by [3-5]. Existence and uniqueness of solutions of systems of non-linear integral 

equations in direct sum of reproducing kernel Hilbert space is presented by [6]. 

     The goal of the paper is to present an approximate representation for solving 

systems of general class of non-linear Volterra integral equations in a direct sum of 

reproducing kernel Hilbert space H[a, b]; see Definition 2.4. The stability of the proposed 

method is proved and the error estimate is investigated in this work as well. We consider for 

all t ∈ [𝑎 − 𝑏]: 

 

                              f(𝑡) = 𝛼(𝑡) + ∫ 𝐹(𝑡, 𝑠, 𝑓(𝑠), 𝑔(𝑠))𝑑𝑠,
𝑡

𝑎
 

                                                                                                                          (1,1) 

                              g(t)= 𝛽(𝑡) + ∫ 𝐺(𝑡, 𝑠, 𝑓(𝑠), 𝑔(𝑠))𝑑𝑠,
𝑡

𝑎
 

 

where 𝛼, 𝛽: 𝑅 → V[a,b] are given functions. The unknown functions 𝑓 , 𝑔  need to be 

determined, and F, G satisfy the given regularity conditions; see [6].  

     We organized this paper into six sections including the introduction In section 2, 

we present basic definitions and related notations for reproducing kernel Hilbert space. We 

introduce the representation of solutions for the proposed problem in Section 3. In section 

4, we study stability and error estimate for the solutions in H[a,b]. We give the numerical 

experiments in Section 5. Finally, in section 6 ends this paper with a conclusion. 

 

2. BASIC DEFINITIONS 

Definition 2.1.  [5] Let H[𝑎, 𝑏] be a function Hilbert space, including all real value 

functions ℎ ∶  𝑋 → 𝑅 where 𝑋 is a on a nonempty abstract set, with the inner product  

 〈∙,∙〉𝐻[𝑎,𝑏]. For all fixed 𝑥 ∈ 𝑋 and if there exists a function 𝑘𝑥(. ) ∈ 𝐻  such that 

 

                                                    〈ℎ, 𝑘𝑥〉𝐻[𝑎,𝑏] = ℎ(𝑥)                                                      

 

for all 𝑥 ∈ 𝑋 and all ℎ ∈ 𝐻. Such a function 𝑘 = 𝑘𝑥(. ) is called the reproducing kernel 

function of  𝐻[𝑎. 𝑏] and the Hilbert space 𝐻[𝑎, 𝑏] is called the reproducing kernel Hilbert 

space. 
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Definition 2.2.  [11] Let V[𝑎, 𝑏] be the space of all absolutely continuous functions 𝑓 ∶

 [𝑎, 𝑏] → 𝑅 such that 𝑓′  𝜖 𝐿2[𝑎, 𝑏]. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐. 𝟑. [9]  The function space V[a, b]  equipped with the inner product 

〈𝑓1  ,𝑓2  〉𝑉[𝑎,𝑏] = 𝑓1(𝑎)𝑓2(𝑎) + ∫ 𝑓1
′ (𝑡)𝑓2

′ (𝑡)  𝑑𝑡,
𝑏

𝑎

 

and associated with the norm. 

‖·‖ = √〈∙,∙〉𝑉[𝑎,𝑏],  

is a reproducing kernel Hilbert space and the reproducing kernl function  

 

K = K(·,·)is defined by: 

 

             𝐾(𝑠, 𝑡) = {

𝑡 + 1 − 𝑎  𝑖𝑓   𝑎 ≤ 𝑡 ≤ 𝑠 ≤ 𝑏,

𝑠 + 1 − 𝑎   𝑖𝑓   𝑎 ≤ 𝑠 ≤ 𝑡 ≤ 𝑏,
                                 

 

Definition 2.4. The function space   

𝐻[𝑎, 𝑏] =  𝑉[𝑎, 𝑏]  ⊕  𝑉[𝑎, 𝑏], 

 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑠 𝑜𝑓 𝑡ℎ𝑜𝑠𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 ℎ⃗ : [𝑎, 𝑏] → 𝑅2 𝑤ℎ𝑒𝑟𝑒 ℎ⃗  =  (ℎ1 , ℎ2)𝑠𝑢𝑐ℎ 

that ℎ1 and  ℎ2 belong to 𝑉[a, b]. 

Definition 2.5. The inner product of the space 𝐻[𝑎, 𝑏] is defined by: 

〈 𝑓 , 𝑔 〉𝐻[𝑎,𝑏] = 〈𝑓1 , 𝑔1〉𝑉[𝑎,𝑏] + 〈𝑓2 , 𝑔2〉𝑉[𝑎,𝑏] , 

where 𝑓 = (𝑓2 , 𝑓2)   𝑎𝑛𝑑 𝑔 = (𝑔1 , 𝑔2). Such a space is called direct sum of the reproducing 

kernel Hilbert space 𝑉[𝑎, 𝑏]. 

 

 

𝟑. 𝐀𝐏𝐏𝐑𝐎𝐗𝐈𝐌𝐀𝐓𝐈𝐎𝐍 𝐎𝐅 𝐒𝐎𝐋𝐔𝐓𝐈𝐎𝐍 

      Let 〈𝐻[𝑎, 𝑏], 〈·,·〉𝐻[𝑎,𝑏]〉 be reproducing kernel Hilbert space of continuous functions 

on a set W in R, with reproducing kernel functions 𝑘, and let 𝑇: 𝐻[𝑎, 𝑏] →  𝐻[𝑎, 𝑏] be a one-to-

one, bounded, linear transformation. If ℎ⃗ ∈ H[𝑎, 𝑏] is a solution to 

𝑇ℎ⃗ = ℎ⃗  

for a given ℎ⃗ ∈ 𝐻 [𝑎, 𝑏] , then ℎ⃗  may be expressed in terms of a complete orthonormal 

basis for 𝐻[𝑎, 𝑏] generated using 𝑇. For more details and proofs of the results in this section 

[9]. 

 

Let {𝑢𝑖 }𝑖=1
∞  be a countable set of distinct points in 𝑊, and define 

𝑅𝑖 = 𝑇∗𝑘𝑢𝑖
, 

where 𝑇∗ ∶  𝐻[𝑎, 𝑏] →  𝐻[𝑎, 𝑏] is the adjoint operator of 𝑇. 

Theorem 3.1. If {ui }i=1
∞  is dense in W. Then {R}i=1

∞  is a complete set in H[a, b] and  

Ri = Tkui
      ∀i∈ N 

Can then be derived by applying the Gram-Schmidt orthonormalization  process to 

{R}i=1
∞ : 
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RK = ∑βikRk,

i

k=1

 

where the βik are orthonormalization coefficients of  {Ri }i=1
∞  

 

Theorem 3.2. Let {ui }i=1
∞  be a countable dense set of points ofW , let h⃗ ∈  H[a, b]be 

solution of Th⃗ = h.⃗⃗  Then h⃗  has the following Hilbert space representation: 

h⃗ = ∑∑βikh⃗ (uk)RK.                                                

i

i=1

∞

i=1

 

We observe that the truncation 

h⃗ n = ∑∑βikh⃗ (uk)RK.

i

i=1

n

i=1

                                                 (3,1) 

is an approximation of the exact solution h⃗  to Th⃗ = h.⃗⃗   

 

4. STABILITY OF SOLUTIONS AND ERROR ESTIMATE 

 

Let T,L   denote the integral operators defined as: 

𝑇ℎ⃗ (𝑡) = ∫ 𝐹(𝑡, 𝑠, ℎ⃗ 
𝑡

𝑎

(𝑠)) 𝑑𝑠, 

𝐿ℎ⃗ (𝑡) = ∫ 𝐺(𝑡, 𝑠, ℎ⃗ 
𝑡

𝑎

(𝑠)) 𝑑𝑠, 

Consider the nonlinear Volterra integral equation 

 

𝑇ℎ⃗ = ℎ⃗   𝑖𝑛 [𝑎, 𝑏] 

 

Set 𝛼 , 𝛽 ∈ 𝐻[𝑎, 𝑏]. Define operators Γ ∶ 𝐻[𝑎, 𝑏] → 𝐻 [𝑎, 𝑏] and   

   Λ:𝐻[𝑎, 𝑏] →  𝐻[𝑎, 𝑏] such that: 

 

Γℎ⃗ (𝑡) =   𝛼(𝑡) +  𝑇ℎ⃗ (𝑡); 

 

Λℎ⃗ (𝑡) = 𝛽(𝑡) + 𝐿ℎ⃗ (𝑡). 

 

for all  ℎ⃗  ∈ 𝐻[𝑎, 𝑏]. We divide the interval [𝑎, 𝑏] into ℕ equally subin- 

tervals 𝑎 ≤ 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 ≤ 𝑏;  where 

∆𝑡 = 𝑡𝑗 − 𝑡𝑗−1 , 𝑗 = 1,2, …𝑁 and ∆𝑡 = 
𝑏−𝑎

𝑁
.  The inner product in 

𝐻[𝑡𝑗 , 𝑡𝑗 + ∆𝑡] is defined by : 

 

〈𝑓 , 𝑔 〉𝐻[𝑡𝑗,𝑡𝑗+∆𝑡] = 〈𝑓1, 𝑔1〉𝑉[𝑡𝑗,𝑡𝑗+∆𝑡] + 〈𝑓2,𝑔2〉v[𝑡𝑗,𝑡𝑗+∆𝑡], 
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 For all 𝑓 , 𝑔 ∈ 𝐻[𝑡𝑗, 𝑡𝑗 + ∆𝑡]. As a result, we see that the operators Γ: 𝐻[𝑡𝑗 , 𝑡𝑗 + ∆𝑡] →  𝐻 

[𝑡𝑗, 𝑡𝑗 + ∆𝑡] and  Λ: 𝐻[𝑡𝑗, 𝑡𝑗 + ∆𝑡]  → 𝐻[𝑡𝑗, 𝑡𝑗 + ∆𝑡] 

become 

𝛤ℎ⃗ (𝜇) = 𝛼(𝜇) + ∫ 𝐹
𝜇

𝑡𝑗

(𝜇 , 𝑠 , ℎ⃗ (𝑠)) 𝑑𝑠; 

𝛬ℎ⃗ (𝜇) = 𝛽(𝜇) + ∫ 𝐺
𝜇

𝑡𝑗

(𝜇 , 𝑠 , ℎ⃗ (𝑠)) 𝑑𝑠. 

for all  𝜇 ∈ 𝐻[𝑡𝑗, 𝑡𝑗 + ∆𝑡].We can rewrite above system as a matrix notation as : 

Пℎ⃗ = ∫ 𝛤
𝑡

𝑎

(𝑡 , 𝑠 , ℎ⃗ (𝑠)) 𝑑𝑠 

where 

 

П = (𝑇, 𝐿) 𝑎𝑛𝑑  𝛤 = (𝐹 , 𝐺) 

 

The stability of RKHS solutions ℎ⃗  to Λℎ⃗ = 𝛼  with respect to the driver 𝛼  is examined in 

this section, and the approximation error is studied when the truncation ℎ⃗ 𝑛, in (1,1) is 

utilise inplace of ℎ⃗ . Solutions in 𝐻[𝑎, 𝑏] will be the main emphasis of this section. The results 

of the RKHS existence and uniqueness tests are as follows [6]. 

Theorem 4.1. Let γ⃗ 1γ⃗ 2, belong to H[tj, tj + ∆t] and let h⃗ 1 , h⃗ 2 be the unique solutions in 

H[tj, tj + ∆t] to  Λh⃗ i = γ⃗ i, (i = 1,2). Then there exist a constant M such that: 

‖h⃗ 1 − h⃗ 2‖H[tj,tj+∆t]
≤ M‖γ⃗ 1 − γ⃗ 2‖H[tj,tj+∆t]. 

Proof: 

‖h⃗ 1 − h⃗ 2‖H[tj,tj+∆t]
= ‖γ⃗ 1 + Пh⃗ 1 − (γ⃗⃗  ⃗

2 + Пh⃗ 2 ) ‖H[tj,tj+∆t]
 

                                                           = ‖γ⃗ 1 − γ⃗ 2 + Пh⃗ 1 − Пh⃗ 2‖H[tj,tj+∆t]
 

                                                           ≤ ‖γ⃗ 1 − γ⃗ 2‖H[tj,tj+∆t] + ‖Пh⃗ 1 − Пh⃗ 2‖H[tj,tj+∆t]
 

 

By theorem 4 

 

                                                           ≤ ‖γ⃗ 1 − γ⃗ 2‖H[tj,tj+∆t] + δ(∆t)‖h⃗ 1 − h⃗ 2‖H[tj,tj+∆t]
 

This implies that. 

 

                                                              ‖h⃗ 1 − h⃗ 2‖H[tj,tj+∆t]
≤ M‖γ⃗ 1 − γ⃗ 2‖H[tj,tj+∆t]. 

 

Where M
1

1−δ(∆t)
 and δ(∆t)  < 1 because ( ∆t)  is taken small enough                ∕                        

   .  

Theorem 4.2. Let n >  0 and let  ti ∈  [a, b] where ti = ti−1 + ∆t, ∆t =
b−a

n
.  Let  h⃗  be a unique 

solution in H[a,b] to Ah⃗ = h⃗ , (A = α⃗⃗ + Пh⃗  ) and let h⃗ n, be an approximate solution of h⃗  given by 

(2.1) then 

http://www.minarjournal.com/


 
Volume 5, Issue 1, March 2023 

 

 

29  

 

www.minarjournal.com 

 

|h⃗ (t) − h⃗ n(t)| ≤
2

n
 ‖Ah⃗ ‖

H[a,b]

 

for all t ∈  [a, b]. 

Proof:  For all t ∈  [a, b] there exists ti ∈ [a, b] such that |t − ti| <
1

n
 . Since   

 Ah⃗ (ti) = Ah⃗ n(ti) for all  i =  0, 1, 2, . . . n.  We note that: 

 

|h⃗ (t) − h⃗ n(t)|   = |h⃗ (t) −  Ah⃗ (ti) + Ah⃗ n(ti) − h⃗ n(t)| 

                                                        = |h⃗ (t) −  h⃗ (ti) + h⃗ n(ti) − h⃗ n(t)| 

                             ≤ |h⃗ (t) − h⃗ (ti)| + |h⃗ n(t) − h⃗ n(ti)| 

Since 

               |h⃗ (t) − h⃗ (ti)| = |〈h⃗ (∙), k⃗ (∙, t)〉H[a,b]
 −  〈h⃗ (∙), k⃗ (∙, ti)〉H[a,b]

 | 

 

                                                        = |〈h⃗ (∙), k⃗ (∙, t) − k⃗ (∙, ti)〉H[a,b]
| 

 

                                                        ≤  ‖Ah⃗ ‖
H[a,b]

‖k⃗ (. , t) − k⃗ (. , ti)‖H[a,b]
 

 

                                =  ‖Ah⃗ ‖
H[a,b]

‖k⃗ 1(. , t) − k⃗ 2(. , ti)‖H[a,b]
 

by definition (2.5) 

|h⃗ − h⃗ (ti)| ≤  ‖Ah⃗ ‖
H[a,b]

   
1

n
 

We can use the same way to show 

|h⃗ n − h⃗ n(ti)| ≤
1

n
 ‖Ah⃗ ‖

H[a,b]
 

From equations 1 and 2 we obtain 

                            |h⃗ (t) − h⃗ n(t)| ≤
2

n
 ‖Ah⃗ ‖

H[a,b]
                                 ∕ 

 

5 .NUMERICAL APPLICATINS 

Example 5.1. Solve the system of non-linear Volterra integral equation 

𝑓(𝑡) = 𝛼(𝑡) + ∫ (𝑡𝑠 + 𝑓(𝑠) + 𝑔(𝑠))
2
 𝑑𝑠

𝑡

0

 

𝑔(𝑡) = 𝛽(𝑡) + ∫ (𝑡𝑠𝑖𝑛(𝑠) + 𝑓(𝑠)𝑔(𝑠))𝑑𝑠.
𝑡

0

 

where 

𝛼(𝑡) =
9

2
−

𝑒2𝑡

2
−

31

30
𝑡5 − 2𝑡 + (−3 + 6𝑡 − 4𝑡2)𝑒𝑡 

and 

𝛽(𝑡) = 2 + 𝑡𝑐𝑜𝑠(𝑡) − 𝑡 + 𝑡2 − (𝑡2 − 2𝑡 + 2)𝑒𝑡 

 

We note that an exact solution for this problem is 
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𝑓(𝑡) = 𝑒𝑡 𝑎𝑛𝑑 𝑔(𝑡) = 𝑡2. 

 

Table 1: Numerical comparisons between the Exact  solution and  the  

Approximate solution 

s 𝑡 Exact  solution 
Approximate   

solution 
Abs. Err. 

0.1 0.1 1.10517 1.10517 1.13252 × 10−5 

0.2 0.2 1.2214 1.2214 5.50071 × 10−5 

0.3 0.3 1.34986 1.34979 3.50843 × 10−4 

0.4 0.4 1.49182 1.49176 9.24575 × 10−4 

0.5 0.5 1.64872 1.64866 2.01681 × 10−4 

0.6 0.6 1.82212 1.82207 3.90183 × 10−4 

0.7 0.7 2.01375 2.01297 6.94282 × 10−3 

0.8 0.8 2.22554 2.22389 1.16089 × 10−3 

0.9 0.9 2.4596 2.4581 1.84935 × 10−3 
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Table 2: Numerical comparisons between the Exact  solution  and  the  

Approximate  solution 

s 𝑡 Exact solution 
Approximate  

solution 
Abs. Err. 

0.1 0.1 0.01 0.01 1.0482 × 10−5 

0.2 0.2 0.04 0.04 2.18436 × 10−5 

0.3 0.3 0.09 0.09 3. 39244 × 10−4 

0.4 0.4 0.16 0.16 4.65076× 10−4 

0.5 0.5 0.25 0.25 5.93028× 10−3 

0.6 0.6 0.36 0.36 7.19261 × 10−3 

0.7 0.7 0.49 0.49 8.38771 × 10−3 

0.8 0.8 0.64 0.64 9.45112× 10−3 

0.9 0.9 0.81 0.81 1.03008× 10−3 

 

 

Fig.1. The proposed  approach  and  the  absolute  error  of  𝒇(𝒕) 
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Fig.2. The  proposed  approach  and  the  absolute  error  of  𝒈(𝒕) 

 

6. CONCLUSION 

In this work, we discussed the stability of solutions of a system of non-linear integral 

equations on the Hilbert space 𝐻[𝑎, 𝑏]. We found the upper bound error; see Theorem (4.2) of 

the approximate solutions which is defined in eq. (3.1). We used the reproducing kernel 

method to solve the problem (1.1). 
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