Received: 25/06/2022

Accepted:13/07/2022

SOME NEW SEMI-NORMED DIFFERENCE ENTIRE SEQUENCE SPACES OF FUZZY REAL

NUMBERS DEFINED BY A DOUBLE ORLICZ FUNCTIONS

Leena ABED MUSLIM KADHIM¹

Directorate of Education, Iraq

Wissam JALIL KARIM²

Directorate of Education, Iraq

Zainab ABDUL-ZAHRA NAJM³

Directorate of Education, Iraq

Abstract:

The purpose of this paper is to introduce semi-normed bounded, convergent and null double sequences of fuzzy real numbers defined by using a double Orlicz functions and study some properties of these sequence spaces like convergence-free, solidness, symmetric. We have proved some inclusion results too.

Keywords: Double Orlicz Function, Fuzzy Real Number, Difference Double Sequence, Semi-Normed Space.

⁶⁰<u>http://dx.doi.org/10.47832/2717-8234.12.51</u>

Lenaabed1984@gmail.com, https://orcid.org/0000-0002-9337-3329

² Wiisam tweej @gmail.com

³ **2** <u>zainabmath87@gmail.com</u>

1. Introduction:

The concept of fuzzy set theory was introduced by Zadeh [1]. Based on this, sequences of fuzzy numbers have been introduced and investigated by many authors, they studied important pro - perties. The works on double sequence of real numbers in Bromwich, was found [2]. Moreover the double sequence was exacted by Moricz [3], Basarir and Sonalncan [4], Tripathly and Sarma [5] and many others.

The notion of difference sequence space of complex numbers was introduced by Kizmaz [6].

On this idea different type of difference sequence spaces was introduced and studied their properties by Tripathy and Baruah [7],Tripathy and Borgohain [8,9],Tripathy and Mahanta [10].

Battor , Neamah [13] defined the double sequence by a double orlicz function $M(X,Y)=(M_1(X),M_2(Y))$ and introduced vector valued double sequence spaces over seminormed space

2. Definitions and Preliminaries

Tripathy and Borgohain [8] defined the space $C(\mathbb{R}^n)$ and the Hausdorff distance on the usual Euclidean \mathbb{R}^n , we defined they on \mathbb{R}^{2n} (the real Euclidean 2n-space of dimension 2n) as follows:

Let $C(\mathbb{R}^{2n}) = \{A \subset \mathbb{R}^{2n} : A \text{ is compact and convex }\}$, then this space has linear structure induced by the following operations:

 $A + B = \{(x, y) + (z, w) : (x, y) \in A, (z, w) \in B\} \text{ and } \lambda A = \{\lambda(x, y) : (x, y) \in A\} \text{ for } A, B \in C(\mathbb{R}^{2n}) \text{ and } \lambda \in \mathbb{R}. \text{Define the Hausdorff distance between A and B of } C(\mathbb{R}^{2n}) \text{ as follows:}$

 $d(A, B) = max\{sup_{(x,y)\in A}inf_{(z,w)\in B} \| (x,y) - (z,w) \|, sup_{(z,w)\in B}inf_{(x,y)\in A} \| (x,y) - (z,w) \|\},\$

where $\|.\|$ denotes to the usual Euclidean norm in \mathbb{R}^{2n} . It is well known that $(C(\mathbb{R}^{2n}), d)$ a complete metric space.

Now, fuzzy real number X on \mathbb{R}^{2n} is a function $X : \mathbb{R}^{2n} \to I = [0,1]$ associating for all real number $t \in \mathbb{R}^{2n}$, with its grade to membership X(t). The class of all fuzzy real numbers is denoted by $\mathbb{R}^{2n}(I)$. For $0 < \alpha \le 1$, α -level set $X^{\alpha} = \{t \in \mathbb{R}^{2n} : X(t) \ge \alpha\}$ is a nonempty compact convex, subsets of \mathbb{R}^{2n} , as the support $X^0 = \lim_{\alpha \to 0^+} X^{\alpha}$. A linear structure of $C(\mathbb{R}^{2n})$ induces the addition X + Y and scalar multiplication λX , $\lambda \in \mathbb{R}$ in terms of α -level sets, by $[X + Y]^{\alpha} = [X]^{\alpha} + [Y]^{\alpha}$ and $[\lambda X]^{\alpha} = \lambda [X]^{\alpha}$, for $0 < \alpha \le 1$, such that

$$\lambda X(t) = \begin{cases} \overline{0}, & \text{for } \lambda = 0\\ X(\lambda^{-1}t), & \text{otherwise.} \end{cases}$$

Define a map $\overline{d} : \mathbb{R}^{2n}(I) \times \mathbb{R}^{2n}(I) \to \mathbb{R}$ for $X, Y, F, H \in \mathbb{R}^{2n}(I)$ such that $\overline{d}((X,Y), (F,H)) = \sup_{0 < \alpha \le 1} (d(X^{\alpha}, Y^{\alpha}), d(F^{\alpha}, H^{\alpha}))$

, where *d* is the Hausdorff metric. $(R^{2n}(I),\bar{d})$ is a complete, locally compact and separable metric space. The additive and multiplicative identities of $R^{2n}(I)$ are denoted by $\bar{\theta}$ and \bar{e} , respectively, such that $\theta = ((0,0), (0,0), ..., (0,0))$ and e = ((1,1), (1,1), ..., (1,1)). The zero double sequence of fuzzy real numbers is denoted by $\bar{\vartheta} = \{(\bar{\theta}, \bar{\theta}), (\bar{\theta}, \bar{\theta}), ..., (\bar{\theta}, \bar{\theta}), ...\}$.

Throughout the article 2E represent a semi-normed space by a semi norm q [15].

Definition 2.1. A double sequence $(X, Y) = (X_{rs}, Y_{rs})$ on fuzzy real numbers is said to be *converge* to the fuzzy numbers X_{00}, Y_{00} , if for every $\varepsilon > 0$, there exists $r_o, s_o \in N$ such that $\bar{d}(X_{rs}, X_{00}) < \varepsilon$, $\bar{d}(Y_{rs}, Y_{00}) < \varepsilon$ for all $r \ge r_o$, $s \ge s_o$, and consequently $\bar{d}((X_{rs}, X_{00}), (Y_{rs}, Y_{00})) < \varepsilon$, for all $r \ge r_o$, $s \ge s_o$.

Definition 2.2. A double sequence $(X,Y) = (X_{rs},Y_{rs})$ on fuzzy real numbers is said to be a *double Cauchy sequence*, if for every $\varepsilon > 0$ there exists $n_0 \in N$ such that $\bar{d}(X_{ij},X_{rs}) < \varepsilon, \bar{d}(Y_{ij},Y_{rs}) < \varepsilon$, to all $i \ge r \ge n_0$, $j \ge s \ge n_0$, and consequently $\bar{d}((X_{ij},X_{rs}),(Y_{ij},Y_{rs})) < \varepsilon$, to all $i \ge r \ge n_0$.

Definition 2.3. A double sequence space 2*E* is said to be *solid* if $(F_{rs}, H_{rs}) \in 2E$, whenever $(X_{rs}, Y_{rs}) \in 2E$ and $|(F_{rs}, H_{rs})| \leq |(X_{rs}, Y_{rs})|$, to all $r, s \in N$.

Definition 2.4. A double sequence space 2*E* is said to be *symmetric* if $S(X_{rs}, Y_{rs}) \subset 2E$ whenever $(X_{rs}, Y_{rs}) \in 2E$, where $S(X_{rs}, Y_{rs})$ means the set of all permutations of the elements of (X_{rs}, Y_{rs}) it is $S(X_{rs}, Y_{rs}) = \{(X_{\pi(r),\pi(s)}, Y_{\pi(r),\pi(s)}) : \pi \text{ is permutation on N} \}.$

Definition 2.5. The double sequence space 2*E* is said to be *convergence-free* if $(F_{rs}, H_{rs}) \in 2E$ whenever $(X_{rs}, Y_{rs}) \in 2E$ and $(X_{rs}, Y_{rs}) = (\bar{\theta}, \bar{\theta})$ implies that $(F_{rs}, H_{rs}) = (\bar{\theta}, \bar{\theta}).$

Definition 2.6. A double sequence space 2*E* is said to be *monotone*. if 2*E* contains the canonical preimages of all its step spaces.

Lemma 2.7 The class of double sequences 2E is solid implies that 2E is monotone.

Lindenstrauss and Tzafrir [14] used the idea of Orlicz function and the sequence space L_M of single sequences, later Battor and Neamah [12] aplied that idea to construct this double sequence space:

$$2L_{M} = \left\{ (X_{rs}, Y_{rs}) \in 2\omega \colon \sum_{r=1}^{\infty} \sum_{s=1}^{\infty} \left[\left(M_{1} \left(\frac{|X_{rs}|}{\rho} \right) \right) \vee \left(M_{2} \left(\frac{|Y_{rs}|}{\rho} \right) \right) \right] < \infty, \text{ for some } \rho > 0 \right\},$$

which is Banach space under the norm:

$$\|(X_{rs}, Y_{rs})\|_{M} = \inf\left\{\rho > 0: \sum_{r=1}^{\infty} \sum_{s=1}^{\infty} \left[\left(M_{1}\left(\frac{|X_{rs}|}{\rho}\right) \right) \vee \left(M_{2}\left(\frac{|Y_{rs}|}{\rho}\right) \right) \right] \le 1 \right\},$$

which is said a double Orlicz of a double sequence space where 2ω is a family of all \mathbb{R}^2 or \mathbb{C}^2 double sequence, so (X_{rs}) and (Y_{rs}) are complex or real double sequence and epilogue that the double Orlicz of a double sequence space $2L_M$ be neatly related to the space $2L_p$, which is a double Orlicz double sequence space with $M(X,Y)=(M_1(X),M_2(Y))=(X^p,Y^p)$, for $(1,1) \leq (p,p) < (\infty,\infty)$ such that $M_1(X) = X^p$, for $1 \leq p < \infty$, and $M_2(Y) = Y^p$, for $1 \leq p < \infty$.

Tripathy et al. [12] generalized difference sequence spaces, later Leena, Ali and Maysoon [16] used that concept to generalized motif the difference double sequence space $Z(\Delta_m^n)$, to $m \ge 1, n \ge 1$,

In this paper we introduce the following a semi-normed difference double sequence spaces of fuzzy real numbers, for a double Orlicz function:

$$(2\ell_{\infty})^{F}(M,\Delta_{m}^{n}) =$$

and

$$(2c_0)^F(M,\Delta_m^n) = \left\{ (X_{rs}, Y_{rs}) \in (2\omega)^F : \lim_{r,s \to \infty} \left[\left(M_1\left(q\left(\frac{\bar{d}(\Delta_m^n X_{rs},\bar{\theta})}{\rho}\right)\right) \right) \right) \bigvee \left(M_2\left(q\left(\frac{\bar{d}(\Delta_m^n Y_{rs},\bar{\theta})}{\rho}\right)\right) \right) \right] = 0, \text{for some } \rho > 0 \right\}$$

3. Main Results

Theorem 3.1 Suppose a semi-normed space (X^2, q) which is complete, the classes of double sequences $(2\ell_{\infty})^F(M, \Delta_m^n)$, $(2c)^F(M, \Delta_m^n)$, $(2c_0)^F(M, \Delta_m^n)$ are complete semi-normed spaces by

$$g_{M}((X,Y),(F,H)) = \sum_{k,l=1}^{mn} \bar{d}((X_{kl},Y_{kl}),(F_{kl},H_{kl})) + \inf\left\{\rho > 0: \sup_{r,s} \left[M_{1}\left(q\left(\frac{\bar{d}(\Delta_{m}^{n}X_{rs},\Delta_{m}^{n}Y_{rs})}{\rho}\right)\right) \lor M_{2}\left(q\left(\frac{\bar{d}(\Delta_{m}^{n}F_{rs},\Delta_{m}^{n}H_{rs})}{\rho}\right)\right)\right] \le 1\right\},$$

$$M((X,Y),(F,H)) = \left(M_{1}(X,Y),M_{2}(F,H)\right) = \inf_{r,s} \left(X,Y,F,H\right) \in (2\ell_{r})^{F}(M,\Lambda^{n}).$$

for $M((X,Y),(F,H)) = (M_1(X,Y),M_2(F,H))$, and $(X,Y),(F,H) \in (2\ell_{\infty})^F(M,\Delta_m^n),$ $(2c)^F(M,\Delta_m^n),(2c_0)^F(M,\Delta_m^n).$

Proof. We prove the result for $(2\ell_{\infty})^{F}(M, \Delta_{m}^{n})$. The proof for the other cases is similarly. Clearly $(2\ell_{\infty})^{F}(M, \Delta_{m}^{n})$ is a semi-normed space of g. Next we prove it is a complete semi-normed space.

Let (X^i, Y^i) be a double Cauchy sequence in $(2\ell_{\infty})^F (M, \Delta_m^n)$, such that $(X^i), (Y^i)$ be a Cauchy sequence in $(2\ell_{\infty})^F (M_1, \Delta_m^n), (2\ell_{\infty})^F (M_2, \Delta_m^n)$, respectively, so $(X^i) = (X_{nq}^i)_{n,q=1}^{\infty}, (Y^i) = (Y_{nq}^i)_{n,q=1}^{\infty}$. Let $\varepsilon > 0$ be given, for a fixed $\eta > 0$, select t > 0 for example $M_1(\frac{t\eta}{2}) \ge 1$, $M_2(\frac{t\eta}{2}) \ge 1$, that is, $M(\frac{t\eta}{2}, \frac{t\eta}{2}) = (M_1(\frac{t\eta}{2}), M_2(\frac{t\eta}{2})) \ge (1, 1)$. Thus it exists a positive integer $n_0(\varepsilon)$ such $g_{M_1}(X^i, X^j) < \frac{\varepsilon}{t\eta}$ and $g_{M_2}(Y^i, Y^j) < \frac{\varepsilon}{t\eta}, \forall i, j \ge n_0$, and consequently, $g_M((X^i, X^j), (Y^i, Y^j)) < \frac{\varepsilon}{t\eta}$, $\forall i, j \ge n_0$. Then By definition of g, we obtain that, $\sum_{k=1}^{mn} \sum_{l=1}^{mn} \overline{d}((X_{kl}^i, X_{kl}^j), (Y_{kl}^i, Y_{kl}^j)) + \inf \left\{ \rho > 0 : \sup_{r,s} \left[M_1\left(q\left(\frac{\overline{d}(\Delta_m^n x_{rs}^i \Delta_m^n x_{rs}^j)}{\rho}\right)\right) \right) \lor M_2\left(q\left(\frac{\overline{d}(\Delta_m^n Y_{rs}^i \Delta_m^n Y_{rs}^j)}{\rho}\right)\right) \right) \le 1 \right\} \le \varepsilon, \dots (3-1)$ $\forall i, j \ge n_0$, which implies $\sum_{k=1}^{mn} \sum_{l=1}^{mn} \overline{d}((X_{kl}^i, X_{kl}^j), (Y_{kl}^i, Y_{kl}^j)) < \varepsilon$ $\forall i, j \ge n_0$.

Hence,
$$\overline{d}\left(\left(X_{kl}^{i}, X_{kl}^{j}\right), \left(Y_{kl}^{i}, Y_{kl}^{j}\right)\right) < \varepsilon$$
, $\forall i, j \ge n_0$, $k, l = 1, 2, 3, ..., mn$. Thus $\left(X_{kl}^{i}, Y_{kl}^{i}\right)$, for

k, l = 1, 2, 3, ..., mn is double Cauchy sequence in $\mathbb{R}^{2n}(I)$, hence it is convergent in $\mathbb{R}^{2n}(I)$ by the completeness monarchy of $\mathbb{R}^{2n}(I)$.

Let
$$\lim_{i\to\infty} (X_{kl}^i, Y_{kl}^i) = (X_{kl}, Y_{kl})$$
, to $k, l = 1, 2, 3, ..., mn$ $(3-2)$
Also, $\sup_{r,s} \left[M_1(q\left(\frac{\bar{d}(\Delta_m^n X_{rs}^i \Delta_m^n X_{rs}^j)}{\rho}\right)) \vee M_2\left(q\left(\frac{\bar{d}(\Delta_m^n Y_{rs}^i \Delta_m^n Y_{rs}^j)}{\rho}\right)\right) \right] \le 1, \forall i, j \ge n_0, \dots (3-3)$
 $\Rightarrow \left[M_1\left(q\left(\frac{\bar{d}(\Delta_m^n X_{rs}^i, \Delta_m^n X_{rs}^j)}{g_{M_1}(X^i, X^j)}\right)\right), M_2\left(q\left(\frac{\bar{d}(\Delta_m^n Y_{rs}^i, \Delta_m^n Y_{rs}^j)}{g_{M_2}(Y^i, Y^j)}\right)\right) \right] \le (1,1) \le \left(M_1\left(\frac{t\eta}{2}\right), M_2\left(\frac{t\eta}{2}\right)\right), \forall i, j \ge n_0$

By continuity of M so M_1,M_2 , we have

$$\bar{d}\left(\Delta_m^n X_{rs}^i, \Delta_m^n X_{rs}^j\right) \leq \frac{t\eta}{2} \cdot g_{M_1}(X^i, X^j) \text{ and } \bar{d}\left(\Delta_m^n Y_{rs}^i, \Delta_m^n Y_{rs}^j\right) \leq \frac{t\eta}{2} \cdot g_{M_2}(Y^i, Y^j), \forall i, j \geq n_0.$$

 $\Rightarrow \bar{d} \left(\Delta_m^n X_{rs}^i, \Delta_m^n X_{rs}^j \right) \leq \frac{t\eta}{2} \cdot \frac{\varepsilon}{t\eta} = \frac{\varepsilon}{2} \quad , \quad \bar{d} \left(\Delta_m^n Y_{rs}^i, \Delta_m^n Y_{rs}^j \right) < \frac{t\eta}{2} \cdot \frac{\varepsilon}{t\eta} = \frac{\varepsilon}{2} , \quad \forall i, j \geq n_0, \quad \text{so we get} \\ \bar{d} \left(\left(\Delta_m^n X_{rs}^i, \Delta_m^n X_{rs}^j \right), \left(\Delta_m^n Y_{rs}^i, \Delta_m^n Y_{rs}^j \right) \right) < \frac{t\eta}{2} \cdot \frac{\varepsilon}{t\eta} = \frac{\varepsilon}{2} , \quad \forall i, j \geq n_0, \text{which implies } \left(\Delta_m^n X_{rs}^i, \Delta_m^n Y_{rs}^i \right) \text{ is double} \\ \text{Cauchy sequence of } R^{2n}(I) \text{ , so is convergent in } R^{2n}(I) \text{ by a completeness property of } R^{2n}(I).$

we have to prove that, $\lim_{i} (X^{i}, Y^{i}) = (X, Y), \quad (X, Y) \in (2\ell_{\infty})^{F}(M, \Delta_{m}^{n}).$

Let
$$\lim_{i}(\Delta_m^n X_{rs}^i, \Delta_m^n Y_{rs}^i) = (F_{rs}, H_{rs})$$
 (say), in $\mathbb{R}^{2n}(I)$, for all $r, s \in \mathbb{N}$.

To r, s =1, we have, from (1 - 1), (3 - 2),

 $\lim_{i \to \infty} \left(X^i_{mn+1,mn+1}, Y^i_{mn+1,mn+1} \right) = \left(X_{mn+1,mn+1}, Y_{mn+1,mn+1} \right), \quad \text{for} \quad m \geq 1 \ , n \geq 1 \ .$

Continuance in this way, $\lim_{t \to \infty} (X_{rs}^i, Y_{rs}^i) = (X_{rs}, Y_{rs})$, for all $r, s \in N$.

Also, $\lim_{i} (\Delta_m^n X_{rs}^i, \Delta_m^n Y_{rs}^i) = (\Delta_m^n X_{rs}, \Delta_m^n Y_{rs})$, for each $r, s \in N$.

Thus, for using the continuity of M, then M_1, M_2 and take over $j \to \infty$, let *i* fixed, that have following from (3-3):

$$\sup_{r,s} \left[M_1(q\left(\frac{\bar{d}(\Delta_m^n X_{rs}^i, \Delta_m^n X_{rs})}{\rho}\right)) \vee M_2\left(q\left(\frac{\bar{d}(\Delta_m^n Y_{rs}^i, \Delta_m^n Y_{rs})}{\rho}\right)\right) \right] \le 1, \text{ for some } \rho > 0.$$

Now, if we take a infimum of such ρ 's and using (3 – 1), we get

$$\inf \left\{ \rho > 0: \sup_{r,s} \left[M_1 \left(q \left(\frac{\bar{d}(\Delta_m^n X_{rs}^i \Delta_m^n X_{rs})}{\rho} \right) \right) \vee M_2 \left(q \left(\frac{\bar{d}(\Delta_m^n Y_{rs}^i \Delta_m^n Y_{rs})}{\rho} \right) \right) \right] \le 1 \right\} < \varepsilon \text{ , } \forall i \ge n_0. \text{ Thus on going to limit as } j \to \infty \text{ and using } (3-1) \text{ again , we get}$$

$$\sum_{k=1}^{mn} \sum_{l=1}^{mn} \bar{d}\left((X_{kl}^{i}, X_{kl}), (Y_{kl}^{i}, Y_{kl}) \right) + \inf\left\{ \rho > 0: \sup_{r,s} \left[M_1\left(q\left(\frac{\bar{d}(\Delta_m^n x_{rs}^i \Delta_m^n X_{rs})}{\rho} \right) \right) \right) \vee M_2\left(q\left(\frac{\bar{d}(\Delta_m^n y_{rs}^i \Delta_m^n Y_{rs})}{\rho} \right) \right) \right] \le 1 \right\} < \varepsilon + \varepsilon = 2\varepsilon, \ \forall i \ge n_0$$

which implies that $g((X^i, X), (Y^i, Y)) < 2\varepsilon$, $\forall i \ge n_0$. That is, $\lim_i (X^i, Y^i) = (X, Y)$.

Now, we show that $(X, Y) \in (2\ell_{\infty})^{F}(M, \Delta_{m}^{n})$, we have,

$$\bar{d}\left(\left(\Delta_m^n X_{rs},\bar{\theta}\right),\left(\Delta_m^n Y_{rs},\bar{\theta}\right)\right) \leq \bar{d}\left(\left(\Delta_m^n X_{rs}^i,\Delta_m^n X_{rs}\right),\left(\Delta_m^n Y_{rs}^i,\Delta_m^n Y_{rs}\right)\right) + \bar{d}\left(\left(\Delta_m^n X_{rs}^i,\bar{\theta}\right),\left(\Delta_m^n Y_{rs}^i,\bar{\theta}\right)\right),$$

By continuity of M so M_1, M_2 , also it's non-decreasing , then we get

$$\begin{split} \sup_{r,s} \left[M_1 \left(q \left(\frac{\bar{d}(\Delta_m^n X_{rs}, \bar{\theta})}{\rho} \right) \right) &\lor M_2 \left(q \left(\frac{\bar{d}(\Delta_m^n Y_{rs}, \bar{\theta})}{\rho} \right) \right) \right] \\ &\leq \sup_{r,s} \left[M_1 \left(q \left(\frac{\bar{d}(\Delta_m^n X_{rs}^i, \Delta_m^n X_{rs})}{\rho} \right) \right) &\lor M_2 \left(q \left(\frac{\bar{d}(\Delta_m^n Y_{rs}^i, \Delta_m^n Y_{rs})}{\rho} \right) \right) \right] + \\ &\sup_{r,s} \left[M_1 \left(q \left(\frac{\bar{d}(\Delta_m^n X_{rs}^i, \bar{\theta})}{\rho} \right) \right) &\lor M_2 \left(q \left(\frac{\bar{d}(\Delta_m^n Y_{rs}^i, \bar{\theta})}{\rho} \right) \right) \right] < \infty, \end{split}$$

which implies that $(X,Y) \in (2\ell_{\infty})^{F}(M,\Delta_{m}^{n})$. Hence $(2\ell_{\infty})^{F}(M,\Delta_{m}^{n})$ is complete semi-normed space.

Result 1. The classes of a double sequences $(2\ell_{\infty})^{F}(M, \Delta_{m}^{n}), (2c)^{F}(M, \Delta_{m}^{n}),$

 $(2c_0)^F(M,\Delta_m^n)$ are not symmetric.

Proof. The effect follows from following example.

Example 3.2 Let m = 2, n = 1 and $M(X, Y) = (M_1(X), M_2(Y)) = (X^2, Y^2)$,

 $\forall (X,Y) \in [0,\infty) \times [0,\infty).$

Consider the double sequence (X_{rs}, Y_{rs}) define by

$$(X_{rs}, Y_{rs})(t) = \begin{cases} (1,1), & \text{for } r, s \in N, t = (rs, rs, ...), \\ (0,0), & \text{otherwise.} \end{cases}$$

Then, $(\Delta_2 X_{rs}, \Delta_2 Y_{rs})(t) = \begin{cases} (1,1), & \text{for } r, s \in N, t = (-2, -2, ...), \\ (0,0), & \text{otherwise.} \end{cases}$

Then, $\bar{d}((\Delta_2 X_{rs}, \bar{0}), (\Delta_2 Y_{rs}, \bar{0})) = (1,1)$, for all $r, s \in N$, which shows $(X_{rs}, Y_{rs}) \in (2c)^F(M, \Delta_2) \subset (2\ell_{\infty})^F(M, \Delta_2)$.Now, let (F_{rs}, H_{rs}) be a rearrangement of (X_{rs}, Y_{rs}) defined as $(F_{rs}, H_{rs}) = ((X_{11}, Y_{11}), (X_{22}, Y_{22}), (X_{44}, Y_{44}), (X_{33}, Y_{33}), (X_{99}, Y_{99}), (X_{55}, Y_{55}), (X_{16}, Y_{16}), ...)$. Then we get, $\bar{d}((\Delta_2 F_{rs}, \bar{0}), (\Delta_2 H_{rs}, \bar{0})) \approx (rs - (rs - 1)^2, rs - (rs - 1)^2) \approx (r^2 s^2, r^2 s^2)$, for all $r, s \in \mathbb{N}$, which

implies, $\sup_{r,s} \left[M_1\left(q\left(\frac{\bar{d}(\Delta_2 F_{rs}, \bar{0})}{\rho}\right) \right) \lor M_2\left(q\left(\frac{\bar{d}(\Delta_2 H_{rs}, \bar{0})}{\rho}\right) \right) \right] = \infty$, for each fixed $\rho > 0$. Hence, $(F_{rs}, H_{rs}) \notin (2\ell_{\infty})^F(M, \Delta_2)$. So the classes of sequences $(2\ell_{\infty})^F(M, \Delta_m^n)$, $(2c)^F(M, \Delta_2)$ and $(2c_0)^F(M, \Delta_m^n)$ are not symmetric.

<u>Notes</u>. i) If m = n = 0, then $(2\ell_{\infty})^{F}(M)$ and $(2c)^{F}(M)$ are symmetric.

ii) If $m \le 1, n \le 1$, then $(2c_0)^F(M, \Delta_m^n)$ is symmetric.

Result 2. The classes of double sequences $(2\ell_{\infty})^{F}(M, \Delta_{m}^{n}), (2c)^{F}(M, \Delta_{m}^{n})$

, $(2c_0)^F(M,\Delta_m^n)$ are not solid, so not monotone.

Proof. We will take this following example $M(X,Y) = (M_1(X),M_2(Y)) =$

Example 3.3 Let m = 2, n = 3 and M(X, Y) = (|X|, |Y|), for all $(X, Y) \in [0, \infty) \times [0, \infty)$.

Consider the double sequence (X_{rs}, Y_{rs}) defined as

$$(X_{rs}, Y_{rs})(t) = \begin{cases} (1,1), \text{ for } r, s \in N, & t = (rs, rs, rs, ...), \\ (0,0), & \text{otherwise.} \end{cases}$$

Then,
$$(\Delta_2^3 X_{rs}, \Delta_2^3 Y_{rs})(t) = \begin{cases} (1,1), & \text{for } r, s \in N, \ t = (0,0,0, \dots), \\ (0,0), & \text{otherwise.} \end{cases}$$

 $\Rightarrow \bar{d}\left((\Delta_2^3 X_{rs}, \bar{\theta}), (\Delta_2^3 Y_{rs}, \bar{\theta})\right) = (0,0), \text{ for } r, s \in N. \text{ Hence, we have}$

$$\sup_{rs} \left[M_1\left(q\left(\frac{\bar{d}(\Delta_2^3 X_{rs}, \bar{\theta})}{\rho}\right)\right) \lor M_2\left(q\left(\frac{\bar{d}(\Delta_2^3 Y_{rs}, \bar{\theta})}{\rho}\right)\right) \right] < \infty, \text{ for some } \rho > 0.\text{This} \quad \text{implies}(X_{rs}, Y_{rs}) \in (2\ell_{\infty})^F(M, \Delta_2^3). \text{ Now, let } (\alpha_{rs}, \beta_{rs}) \text{ be a double sequence of scalars defined as}$$

$$(\alpha_{rs},\beta_{rs}) = \begin{cases} (1,1), & \text{for } r,s = i^2, i \in N, \\ (0,0), & \text{otherwise}. \end{cases}$$

Then, for $r, s = i^2$, we have

$$(\alpha_{rs}X_{rs},\beta_{rs}Y_{rs})(t) = \begin{cases} (1,1), & t = (rs,rs,...), \\ (0,0), & \text{otherwise.} \end{cases}$$

For $r, s \neq i^2$, we have

$$(\alpha_{rs}X_{rs},\beta_{rs}Y_{rs})(t) = \begin{cases} (1,1), & t = (0,0,\dots), \\ (0,0), & \text{otherwise.} \end{cases}$$

$$\Rightarrow \qquad \sup_{r,s} \left[M_1\left(q\left(\frac{\bar{d}(\Delta_2^3 X_{rs}, \overline{\theta})}{\rho}\right)\right) \vee M_2\left(q\left(\frac{\bar{d}(\Delta_2^3 Y_{rs}, \overline{\theta})}{\rho}\right)\right) \right] = \infty, \text{ for some } \rho > 0 \ .$$

Thus $(\alpha_{rs}X_{rs},\beta_{rs}Y_{rs}) \notin (2\ell_{\infty})^{F}(M,\Delta_{2}^{3})$. Hence, $(2\ell_{\infty})^{F}(M,\Delta_{m}^{n})$ is not *solid*, so not *monotone* by lemma 1.Similarly,the other classes can be proven.

Proposition 3.4 These double sequences $(2\ell_{\infty})^{F}(M, \Delta_{m}^{n}), (2c)^{F}(M, \Delta_{m}^{n})$

, $(2c_0)^F(M,\Delta_m^n)$ aren't convergence-free.

Proof. To show, that we have the following example.

Example 3.5 Let m = 4 and $n = 1, M(X,Y) = (X^3,Y^3)$, to all $(X,Y) \in [0,\infty) \times [0,\infty)$ and consider the double sequence (X_{rs}, Y_{rs}) defined as $(X_{rs}, Y_{rs})(t) = \begin{cases} (1,1), \text{ for } r, s \in N, t = \left(\frac{1}{rs}, \frac{1}{rs}, \dots\right) \\ (0,0), & \text{otherwise.} \end{cases}$ Then $(\Delta_4 X_{rs}, \Delta_4 Y_{rs})(t) = \begin{cases} (1,1), & \text{for } r, s \in N, t = \left(\frac{4}{rs(rs+4)}, \frac{4}{rs(rs+4)}, \dots\right) \\ (0,0). & \text{otherwise.} \end{cases}$.

$$\Rightarrow \quad \bar{d}\left((\Delta_4 X_{rs}, \bar{\theta}), (\Delta_4 Y_{rs}, \bar{\theta})\right) = \left(\frac{4}{rs(rs+4)}, \frac{4}{rs(rs+4)}\right), \text{ which implies } (X_{rs}, Y_{rs}) \in (2c_0)^F(M, \Delta_4)$$
$$\subset (2c)^F(M, \Delta_4) \subset (2\ell_{\infty})^F(M, \Delta_4). \text{ Now, let } (F_{rs}, H_{rs}) \text{ be a double sequence defined as}$$

$$(F_{rs}, H_{rs})(t) = \begin{cases} (1,1), & \text{for } r, s \in N, t = ((rs)^2, (rs)^2, \dots) \\ (0,0), & \text{otherwise.} \end{cases}$$

Furthermore, $(\Delta_4 F_{rs}, \Delta_4 H_{rs})(t) = \begin{cases} (1,1), & \text{for } r, s \in N, t = (-(8rs + 16), -(8rs + 16), \dots) \\ (0,0), & \text{otherwise}, \end{cases}$

$$\Rightarrow \quad \bar{d}\left((\Delta_4 F_{rs}, \bar{\theta}), (\Delta_4 H_{rs}, \bar{\theta})\right) = (8rs + 16, 8rs + 16), \quad \text{for } r, s \in N, \quad \text{which} \quad \text{implies}, \\ \sum_{rs} \left[M_1\left(q\left(\frac{\bar{d}(\Delta_4 F_{rs}, \bar{\theta})}{\rho}\right)\right) \lor M_2\left(q\left(\frac{\bar{d}(\Delta_4 H_{rs}, \bar{\theta})}{\rho}\right)\right)\right] = \infty, \text{ for some } \rho > 0. \text{This} \quad \text{means}, \quad (F_{rs}, H_{rs}) \notin 0. \text{This}$$

 $\sup_{r,s} \left[M_1 \left(q \left(\frac{\bar{d}(\Delta_4 F_{rs}, \bar{\theta})}{\rho} \right) \right) \lor M_2 \left(q \left(\frac{\bar{d}(\Delta_4 H_{rs}, \bar{\theta})}{\rho} \right) \right) \right] = \infty, \text{ for some } \rho > 0.\text{This} \quad \text{means}, \quad (F_{rs}, H_{rs}) = (2\ell_{\infty})^F (M, \Delta_4).$

Hence the classes $(2\ell_{\infty})^{F}(M,\Delta_{m}^{n}),(2c)^{F}(M,\Delta_{m}^{n}),(2c_{0})^{F}(M,\Delta_{m}^{n})$ are not convergence-free.

Theorem 3.6 Let $M = (M_1, M_2)$ and $\mathcal{M} = (M_3, M_4)$ be a double Orlicz functions satisfying Δ_2 condition. Then, for $Z = (2\ell_{\infty})^F, (2c)^F, (2c_0)^F$,

(i) $Z(M, \Delta_m^n) \subseteq Z(\mathcal{M} \circ M, \Delta_m^n),$

 $(ii) Z(M, \Delta_m^n) \cap Z(\mathcal{M}, \Delta_m^n) \subseteq Z(M + \mathcal{M}, \Delta_m^n).$

Proof. We show this result for the space $(2\ell_{\infty})^{F}(M,\Delta_{m}^{n})$. The other spaces can be shown similarly.

(i) Let $(X_{rs}, Y_{rs}) \in (2\ell_{\infty})^{F}(M, \Delta_{m}^{n})$ such that $X_{rs} \in (2\ell_{\infty})^{F}(M_{1}, \Delta_{m}^{n}), Y_{rs} \in (2\ell_{\infty})^{F}(M_{2}, \Delta_{m}^{n}).$ Consider $\varepsilon > 0$ and $\tau > 0$ such that $\varepsilon = \mathcal{M}(\tau)$.

$$\begin{aligned} & \text{Then}\left[M_1\left(q\left(\frac{\bar{d}(\Delta_m^n X_{rs,L})}{\rho}\right)\right), M_2\left(q\left(\frac{\bar{d}(\Delta_m^n Y_{rs,L})}{\rho}\right)\right)\right] < \tau, \\ & \text{for some } \rho > 0. \text{Let}\left(F_{rs}, H_{rs}\right) = \left[M_1\left(q\left(\frac{\bar{d}(\Delta_m^n X_{rs,L})}{\rho}\right)\right), M_2\left(q\left(\frac{\bar{d}(\Delta_m^n Y_{rs,L})}{\rho}\right)\right)\right], \text{ for some } \rho > 0. \end{aligned}$$

We know ${\mathcal M}$ is continuous and non-decreasing , then we have,

$$\mathcal{M}(F_{rs}, H_{rs}) = \mathcal{M}\left[M_1\left(q\left(\frac{\bar{d}(\Delta_m^n X_{rs}, L)}{\rho}\right)\right) \vee M_2\left(q\left(\frac{\bar{d}(\Delta_m^n Y_{rs}, L)}{\rho}\right)\right)\right] < \mathcal{M}(\tau) = \varepsilon \text{ , for some } \rho > 0 \text{ ,}$$

which means $(X_{rs}, Y_{rs}) \in Z(\mathcal{M} \circ M, \Delta_m^n)$. Hence the proof is complete.

(ii) Let $(X_{rs}, Y_{rs}) \in Z(M, \Delta_m^n) \cap Z(\mathcal{M}, \Delta_m^n)$. Then for some $\rho > 0$, we have,

$$\begin{split} \left[M_1 \left(q \left(\frac{\bar{d}(\Delta_m^n X_{rs}, L_1)}{\rho} \right) \right), & M_2 \left(q \left(\frac{\bar{d}(\Delta_m^n Y_{rs}, L_2)}{\rho} \right) \right) \right] \\ & < \varepsilon , \ \sup_{r,s} \left[M_3 \left(q \left(\frac{\bar{d}(\Delta_m^n X_{rs}, L_1)}{\rho} \right) \right), & M_4 \left(q \left(\frac{\bar{d}(\Delta_m^n Y_{rs}, L_2)}{\rho} \right) \right) \right] < \varepsilon. \end{split}$$

From the equality the proof follows:

$$(M+\mathcal{M})\left(q\left(\frac{\bar{d}(\Delta_m^n X_{rs}, L_1)}{\rho}, \frac{\bar{d}(\Delta_m^n Y_{rs}, L_2)}{\rho}\right)\right) = \left[M_1\left(q\left(\frac{\bar{d}(\Delta_m^n X_{rs}, L_1)}{\rho}\right)\right), M_2\left(q\left(\frac{\bar{d}(\Delta_m^n Y_{rs}, L_2)}{\rho}\right)\right)\right] + \left[M_3\left(q\left(\frac{\bar{d}(\Delta_m^n X_{rs}, L_1)}{\rho}\right)\right), M_4\left(q\left(\frac{\bar{d}(\Delta_m^n Y_{rs}, L_2)}{\rho}\right)\right)\right] < \varepsilon + \varepsilon = 2\varepsilon,$$

to some $\rho > 0$ that means $(X_{rs}, Y_{rs}) \in Z(M + \mathcal{M}, \Delta_m^n)$. Hence the proof is complete.

Proposition 3.7 One has $Z(M, \Delta_m^i) \subset Z(M, \Delta_m^n)$, for $0 \le i < n$ where $M = (M_1, M_2)$ And $Z = (2\ell_{\infty})^F, (2c)^F, (2c_0)^F$.

Proof.

Let
$$(X_{rs}, Y_{rs}) \in (2\ell_{\infty})^{F}(M, \Delta_{m}^{n-1})$$
 such that $X_{rs} \in (2\ell_{\infty})^{F}(M_{1}, \Delta_{m}^{n-1}), Y_{rs} \in (2\ell_{\infty})^{F}(M_{2}, \Delta_{m}^{n-1})$. Then, we have $\left(sup_{r,s\geq 1}\left[M_{1}\left(q\left(\frac{\bar{d}(\Delta_{m}^{n-1}X_{rs},\bar{0})}{\rho}\right)\right) \vee M_{2}\left(q\left(\frac{\bar{d}(\Delta_{m}^{n-1}Y_{rs},\bar{0})}{\rho}\right)\right)\right)\right]\right) < \infty$.
We have, $\left(sup_{r,s\geq 1}\left[M_{1}q\left(\frac{\bar{d}(\Delta_{m}^{n-1}X_{rs},-\Delta_{m}^{n-1}X_{r,s+m},\bar{0})}{\rho}\right) \vee M_{2}q\left(\frac{\bar{d}(\Delta_{m}^{n-1}Y_{rs},-\Delta_{m}^{n-1}Y_{r,s+m},\bar{0})}{\rho}\right)\right)\right]\right)$
 $\leq \frac{1}{2}sup_{r,s\geq 1}\left[M_{1}\left(q\left(\frac{\bar{d}(\Delta_{m}^{n-1}X_{rs},\bar{0})}{\rho}\right)\right) \vee M_{2}\left(q\left(\frac{\bar{d}(\Delta_{m}^{n-1}Y_{rs},\bar{0})}{\rho}\right)\right)\right]$
 $+\frac{1}{2}sup_{r,s\geq 1}\left[M_{1}\left(q\left(\frac{\bar{d}(\Delta_{m}^{n-1}X_{r,s+m},\bar{0})}{\rho}\right)\right) \vee M_{2}\left(q\left(\frac{\bar{d}(\Delta_{m}^{n-1}Y_{r,s+m},\bar{0})}{\rho}\right)\right)\right] < \infty$.

Follow up in this way, we have $Z(M,\Delta_m^i) \subset Z(M,\Delta_m^n),$ for $0 \leq i < n.$ This complete the proof.

References:

- [1] L.A. Zadeh, Fuzzy sets, Inform. and control. 8 (1965) 338-353.
- [2] T.J.I. Bromwich, An introduction the theory of infinite series, Macmillan & Co. New York, 1965.
- [3] F. Moricz, Extension of spaces c and c_0 from single to double sequences, Acta Math. Hung. 57(1-2) (1991) 129-136.
- [4] M. Basarir. O. Solancan, On some double sequence spaces, J. Indian Acad. Math. 21 (2) (1999)

- B.C. Tripathy. B. Sarma, Statistically convergent difference double sequence spaces, Act. Math. Sini. 24(5) (2008)737-742.
- [6] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24 (2) (1981) 169-176.
- [7] B.C. Tripathy and A. Baruah, New type of difference sequence spaces of fuzzy real numbers, Math.Orlicz. and Anal. 14(3)(2009) 391-397.
- [8] B.C. Tripathy and S. Borgohain, Some classes of difference sequence spaces of fuzzy real numbers defined by Orlicz Function, ID216414,(2011)1-6.
- [9] B.C. Tripathy and S. Borgohain, The sequence space $m(M, \emptyset, \Delta_m^n, p)^F$, Math. Model. and Anal. 13(4) (2008) 577-586.
- [10] B.C. Tripathy. S. Mahanta, On a Class of difference sequences related to the ℓ^p space defined by Orlicz functions, Math. Sl. 57 (2) (2007) 171-178.
- [11] B.C. Tripathy and A. Esi, A new type of difference sequence spaces, Intern. J. Sci. Tech. 1(1)(2006) 11-14.
- [12] B.C. Tripathy, A. Esi, and B. K Tripathy, On a new type of generalized difference Cesaro sequence spaces, Soo. J. of Math. 31 (2) (2005) 333-340.
- [13] A.H. Battor, M. A. Neamah, On statistically convergent double sequence spaces defined by Orlicz functions, Master thesis. University of Kufa (2017) 28-32.
- [14] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J.Math.10(1971)379-390.
- [15] Henri Bourles, Fundamentals of Advanced Math.2, (2018) 117-196.
- [16] Leena,Ali and Masoon, some classes of difference double sequence spaces of fuzzy real numbers defined by double orlicz function, Jour of Adv Research in Dynamical & Control Systems, (12), (1)(2020)270-277.

^{193-200.}