
 
 

This article has been scanned by iThenticat No plagiarism detected 
 

 

MINAR International Journal of Applied Sciences and Technology  

 Article type      : Research Article                                

 Date Received     : 01/10/2020                                         

 Date Accepted     :  22 /10/2020 

 Date published    : 01/12/2020 
              : www.minarjournal.com 

            http://dx.doi.org/10.47832/2717-8234.4-2.9 

 

SOLVING N-QUEEN PROBLEM USING PROBABILITY COLLECTIVE 

Lutfia Khalifa Haj MOHAMED 1 

 

Abstract 

 

Many types of research solve N-Queen Problem by using various techniques as Genetic 

algorithm (GA), particle swarm optimisation (PSO), and simulating annealing (SA). This paper 

motivates and describes the use of probability collectives (PC) with coordination multi-agent 

system to solve the N-Queen Problem. The main challenge is to make the agents work in a 

coordinate a way, optimising the local utilities and contributing the maximum towards optimisation 

of the global objective.  

Keywords: Probability Collectives, Collective Intelligence, Multiagent systems, N-Queen 

Problem.  
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Literature Review 
In a few past years, there are challenges to solve complex problems by using a set of distributed intelligence 
agents. These agents act in some specific direction to find local payoffs or the best solution. Hence, 
Probability collectives (PC) in the framework of CION are a new distributed optimisation algorithm that was 
first introduced by Dr David Worlpert in 1999 in a Technical Report suggested to NASA [6] [9]. In 2004, many 
modifications and applications have already been evolved, where Lee and Worlpert change the word utility 
with a private utility to reduce the sample size utilised in the PC algorithm with no prejudice and low contrast. 
The sample size has effectively been reduced using the data aging technique (Beneniawski et al 2005). 
Kulkarni et al (2008) shorted the sample region around the present optimal points by modifying the sample 
principle on original MontE-Carlo. In 2011, it has been updated some of the strategies like Steepest Decent, 
Nearest Newton, and Brower Fixed Point method by Worlpert et al [10]. Moreover, Worlpert et al used the 
significance sampling and parametric Machine Learning technique to classify the PC algorithm as ‘Delayed 
Sampling’ and place forward another ‘Immediate Sampling’. Kulkarni et al. (2011) have been used the 
Broyden Fletcher Goldfarb Shanno method (BFGS) to optimise the model [10][9]. 
Some application is implemented using the approach of the PC to solve different areas. The benchmark 
problems demonstrate that the PC algorithm outperforms on GA in the rate of decent, trapping in fake 
minima and long term optimisation (Hung et at 2005). PC is also used to evaluate the queens, bar, and bin 
packing problems by (Worlpert et al). It has been solved as multi-depot multiple travelling salesmen 
problems (Kulkarni et al 2010; Kulkarni et al 2010b), the feel assignment problem (Antoine et al 2004), 
university course timetabling problems (Autory and Brian 2008), and vehicle routing problems (Kulkarni et al 
2010) [10]. 

1. Introduction to probability collective 
PC algorithm is a modern method to solve distributed optimisation problems and the approach of PC which is 
in the framework of CION with its linkages to Game Theory, Statistical Physics, and Optimisation [11][1]. In 
PC, the variables are denoted as individual agents/players and the distributed optimisation problem is 
considered as a game played by these agents [2] [4]. Theory of PC allocates probability distributed values to 
select the agents’ moves and allowing for each agent to autonomously update its own probability distribution 
at each iteration. These agents select a particular action based on the highest probability to optimise their 
own utility function. Thus, The algorithm continues to find the best solution until the convergence reaches to 
the global solution or one of stopping criteria such as T = 0  [5]. 
In some applications, the agents require knowing the inter-agent-relationship. It is one of the strategies set 
which each agent assumed to realise. This permits all the agents to define the correct access to the strategy 
collections. These decisions are picked independently by every agent finding the available information due to 
optimise the local utility and realise the global utility [5].   
1.1 Advantages of Probability Collectives 
Probability collectives have many benefits over the other techniques that can use optimisation tasks: 
In PC, every agent autonomously updates its own probability values at any time, and it can be used on 
continuous, discrete or mixed variables [5] [3]. 
- A set of probability strategy has always been a vector of real numbers with this way it permits the technique 
of simple optimisation for Euclidean vectors as the gradient descent to be usable [3]. 
- The cost function of the PC can be irregular or noisy because it is a robust algorithm [3]. 
- A variable with a peaky distribution plays a more significant role in the optimisation task than a variable with 
a broad distribution since PC provides the sensitivity information about the problem [4]. 
- Each agent (variable) can find the minimum value of the global objective by using the Homotopy function 
[6]. 
1.2 N-Queens Problem 
The N-queens problem has been proposed by Max Bezzel in 1848 for normal 8×8 chessboard, which 

belongs to the class of constraint satisfaction problems. The objective of the problem is to put N queens on a 

N × N chessboard where there are no conflicts among any of queens such as no shared rows, columns, 
diagonals [8]. This problem is formalized as follows. 

- Let V = {v1, … … . . vn}  are a group of variables and each of them is identical to a row in the chessboard 
[8]. 

- N are a number of queens.  

- Every variable vi takes a value from the domain where Di = {1,2,3 … … … … n}, where every vi 
corresponds to a column of the chessboard which can place a queen [7]. 

-  The constraints are  vi ≠ vj, vi − vj ≠ i − j, vi − vj ≠ j − i [7]. 

- The objective function is non-attacking queens on the N × N chessboard by considering the chess rules. 
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Figure 1: Example of Queen’s Move 

2. probability Collectives Algorithm 
Probability collectives can formalise as a group of N agents, each agent xi can take on a finite number of 

values from interval Ω ∈ [xi
L, xi

H]  and builds a set of solution through a strategy set x represented as [5][9]: 

    Xi = {Xi
[1]

, Xi
[2]

, … … … , Xi
[mi]

},   i ∈ {1,2, … … . . N}                                       (1)                                                                                                                     

Where mi is the number of strategies and N is the number of variables, In PC, each agent combines the 
strategy Yi

r  which choses randomly by other agents as: 

Yi
[1]

= {X1
[?]

, X2
[?]
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, … … . . , XN−1
[?]

, XN
[?]

}                                                    (2) 

The superscript [?] denotes to random selection and each agent has formed one strategy set for every of the 
residual strategies. Accordingly, the set of solutions build by agent i as shown below. 
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As the same, all the residual agents form their collective strategy sets as shown in equation (3), then every 

agent i evaluates the objective function for each their combined strategy set    Yi

[mi]
 as: 

[G(Yi
[1]
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), … … . . , G (Yi
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Each agent finds the sum of the objective function for its combined strategy set to be minimised as follows 
[9]: 
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It is a very hard to find the minimum of function ∑ G(Yi
[r]

)nmi
r=1 , because there are several possible local 

minima. For this reason, the objective function ∑ G(Yi
[r]

)nmi
r=1  are converted into another to topological space 

by building an easier functionE and placing it in a new form known as a Homotopy Function. 

Ji(q(xi), T) = ∑ G(Yi
[r]

) − T ∗ E
mi
r=1   ,      T ∈ [0, ∞)                                         (6) 
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Agent i 

For all agents are assigned uniform probability distribution q(Xi
[r]

) such as if the number of strategies mi = 5 

then each agent i will take uniform probability distribution q(Xi
[r]

) =
1

5
  that is shown in figure 2.  

 
 
 
 
 
 
 
 
 

 
 

Figure 2: Uniform Probability Distribution mi = 5 of Agent I 
 
 

Hence, q(Xi
[r]

) is calculated as: 

q(Xi
[r]

) =
1

mi
   , k = 1,2,3…………,mi                                                                 (7) 

Every agent calculates the expected utility function ∑ E
mi
r=1 (G(Yi

[r]
)) through using a joint product probability 

which is formed from the probability distribution of other agents randomly, The expected objective function 
for N agents are as follows [2][9]: 
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Now, we need to replace E used in the Homotopy function and put its place a Convex function such as the 
Entropy Function [6][5]. 

Si = − ∑ [q(Xi
[r]

) log2 q(Xi
[r]

)]
mi
r=1                                                                       (9) 

Hence, each agent i minimized its Homotopy function as: 

Ji (q(Xi
[r]

), T) = ∑ E(G(Yi
[r]

))
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r=1

− T ∗  Si 

= ∑ E(G(Yi
[r]
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[r]
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[r]

)]
mi
r=1 )

mi
r=1                             (10) 

Where T ∈ [0, ∞)    
 
Some of a suitable optimisation technique is used to find the minimization of Homotopy function such as 
Nearest Newton Descent Scheme (NNDS), Broden-Flectcher-Goldfarb-Shanno (BFGS) and Deterministic 
Annealing (DA) (Kulkarni et al 2015)[6][9]. Thus, the NNDS will be used in this thesis to update the 
probability of all the strategies of each agent i as follows: 

q(Xi
[r]

) ← q(Xi
[r]

) −∝step ∗ q(Xi
[r]

) ∗ Kr  update                                             (11) 

Where  Kr  update =
Contribution of agent ir

T
+ si(q) + ln (q(Xi

[r]
))                  (12) 

And Contribution of agent ir = E (G(Yi
[r]

))
n

− (∑ E (G(Yi
[r]

))
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n
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))
𝑚1

𝑟=1
 

∑ 𝐸 (𝐺 (𝑌𝑁
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(8) 
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∝step is constant which takes a value ∈ (0, 1]and T is Boltzamann’s temperature,  which starts from T ≫

0 or T = Tintial or T → ∞, so K is a number of iterations and si(q) is the Entropy Function of agenti. Clearly, 
each strategy has the maximum contribution for the minimisation of the expected utility function. This 

strategy is known as a favourable combined strategy Xi
[fav]

 [9]. For example, there are 5 strategies for 3 

agents as demonstrated in figure 3. 
 

 
 
 

 
 
 

 
 
 
 
 
 
 
 

a) Favourable Strategy for Agent 1                        b). Favourable Strategy for Agent 2 
 
 
 
 
 

 
 
 
 
 
 
 
 

c) Favourable Strategy for Agent 3 

Figure 3: Probability Distribution  

 
 

All agents compute the objective function (G(Yfav)
n

  where Yfav is given by Yfav = {X1
fav,n, X2

fav,n, . , XN−1
fav,n, XN

fav,n}. 

Actually, there are some criteria to terminate the algorithm of probability collectives either: 

- If temperature T → 0. 

- If ||  G(Yfav)
n

− G(Yfav)
n−1

|| ≤  ε  where ε > 0. 

For each iteration, the PC algorithm updates the boundaries of variables Ω and Boltzmann’s temperature as 
follows: 

Xi
L(n + 1) = (1 − λ) ∗ Xi

fav   , i=1… N                                                             (14) 

Xi
H(n + 1) = (1 + λ) ∗ Xi

fav, i = 1,………, N                                                   (15) 

Tn+1 = (1 − αT) ∗ Tn                                                                                           (16) 
Where 0 < λ < 1 is the range factor and 0 < αT < 1 is the cooling rate. The algorithm PC continues until one 
of mentioned criteria above is satisfied. 

3. Application of PC to N-queens problem 
In this thesis, we applied this problem addressed by PC to Distributed Constraint Satisfaction Problems 
(DCSP). We can formalise the algorithm as follows: 
Step 1: Initialize the parameters of the PC algorithm (T = 100, λ = 0.9, αs = 0.098, αT = 0.9, K = 150, Mi =
10, Runs = 20), and ( NQ = 40 is a number of queens, N = 10 is a number of population and  NAction = is a 
number of actions. 
Step 2: Create  actions list. 
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Step 3: Initialize a set of agents where each agent can take a value from domain ={1,2,….,NQ} where 
initialization is done using a random permutation such as x=[1,3,4,2]. 
Step4: Apply actions and evaluate the objective function for each agent. 
Step 5: Check all constraint which is satisfied. 
Step 6: Find the best solution using the PC algorithm.  
Step 7: Until the global minimum is reached, then accept the optimal solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: shows the flowchart of the PC algorithm to the N-queens problem. 
 

 
 
The probability collectives are implemented to solve four problems using Matlab2013b in Windows 7 
operating systems and run on a personal computer with Intel Core(TM) i3 2.10 GHz CPU and 4.00GB of 
RAM. we implemented the PC algorithm of N-queens problem for various sizes N=(8,100,150,180) and show 
the best solution based on time and a number of iterations. 

4. Results of N-Queens Problem 
We implemented the PC algorithm to solve the N-queens problems at different sizes (N = 8,100,150,180). 
Figure 5 illustrates the convergence for various sizes of problem. The numbers of conflicts drop sharply from 
1 to 0 as in figure 5 (a). Whereas, the number of conflicts in figure 5 (b, c, d) decreased gradually to reach 
zero. This means, the small size of the problem took much fewer iterations to convergences than larger 
sizes. 
 
 
 
 
 
 
 
 

Initialize the parameters {𝑁𝑄, 𝑁, 𝑁𝐴𝑐𝑡𝑖𝑜𝑛} 
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reached 

 

Accept the optimal solution 

START 

STOP 

Y 

Y 

N 

N 



97 | Lutfia Khalifa Haj MOHAMED 
 

 
 

December 2020, Volume 2, Issue 4 
 p. 91-99 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a) N = 8 queens                                   (b) N = 100 queens 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(c)  N = 150 queens                                             (d)  N = 180 queens 

 
Figure 5: The Convergence for PC Algorithm Runs on Different Sizes of Queens 

 

Table 1 shows the result of applying the PC algorithm to find the best solution for N-queens, with the time 
that is needed to achieve each solution. For example, 8 queens are distributed on a chessboard as :( q1 at 

column 4, q1 at column 8, q1 at column 1, q1 at column 5, q1 at column 7, q1 at column 2, q1 at column 6, q1 
at column 3). 
 
Table 1: The Results of N-Queens Problem and Time of Reaching the Optimum Solutions 
 

Number 
of queens 

Number of 
Generations 

Time Solutions 

8 2 0.408623 s [4,8,1,5,7,2,6,3] 

100 19 
2168.79359

s 

[27,90,17,62,47,2,41,71,24,3,80,4,37,66,96,87,29,
69,28,65,67,1,54,57,84,94,40,44,89,95,11,73,31, 
34,19,38,98,100,45,76,8,52,46,14,53,36,77,42,81, 
78,56,5,10,79,18,43,13,93,97,55,83,51,15,63,85, 
70,33,91,6,99,68,21,64,48,82,20,25,23,7,39,92,59
,12,22,49,26,88,60,32,75,72,74,61,35,50,30,58,16
,9] 
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5. Conclusion 
In this paper, we have implemented the N-queens problem using probability collectives algorithm. The PC is 
a general framework of agent coordination and distributed optimisation, which is a type of heuristic algorithm. 
This algorithm concentrates on adapting the distributions the strategy set of each agent to improve its 
performance. Each agent makes options using the determined utility until the algorithm reaches the 
convergence. The performance of probability collective is tested using the N-queens problems at different 
sizes (N = 8,100,150,180). The results show that the PC algorithm was successful and was sufficiently robust 
in solving these problems.   
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