
 MINAR

International Journal of Applied Sciences and Technology

ISSN: 2717-8234

Article type: Research Article

Received: 25/12/2023 Accepted: 01/02/2024 Published: 01/03/2024

SOFTWARE MODULES CLUSTERING: A LITERATURE REVIEW

Ali Hussein ALI1

University of Mosul, Iraq

Dujan B. TAHA

University of Mosul, Iraq

Abstract

Maintenance takes the largest cost within software engineering processes. Because

understanding the software code is complex and requires a deep understanding of the

structure of building the code. To face Such a problem and other problems such as research

purposes, or retrieval, restructuring, and understanding the behavior of software entities,

today the software component, such as objects, classes, or files that have similarity in feature

can be grouped together using unsupervised learning method called software module

clustering. This method gives a clear picture of the components of the program and the details

of the dependencies between these components, and thus it gives a structure that can be

relied upon effectively. This research paper will present a compilation of studies published in

this field over the past 23 years. We review 36 well-known research papers in the literature

that examines software module clustering techniques and obtain useful results and data.

Research containing duplicate ideas was excluded. We will attempt to answer the following

questions: What are the modern methods used in the concept of clustering? What are the

applications of clustering in software engineering? What are various clustering algorithms?

What evaluation methods are available for assessing the quality of clustering techniques?

Keywords: Software Modules Clustering, Clustering Algorithms, Clustering Applications,

Software Clustering.

 http://dx.doi.org/10.47832/2717-8234.18.7

1 alihoseen90@gmail.com

MINAR International Journal of Applied Sciences and Technology

92

www.minarjournal.com

Introduction

The goal of the clustering technique, also known as cluster analysis, is to arrange

components from a given dataset into several clusters using an unsupervised data mining

approach.[1] Elements within the same cluster have similarities in certain features. Similarities

and dissimilarities can be measured. Software clustering in the field of software engineering

involves the decomposition of intricate and extensive software systems into smaller subsystems

that have high cohesion and low coupling, whose content can be understood, managed, handled

and maintained more easily. [2]

It is now challenging for software module clustering to keep up with the rapid pace of

software development and the constant changes in application requirements, though. For

example, there are few experimental studies on clustering topics for systems that use more than

one programming language in their development, as well as systems that call web services

available on the Internet. [3][4][5]

The Process of Clustering

Software Modules

 As shown in Figure 1, the standard clustering process includes five basic stages. The

process finish when the completion criterion is met, for example the maximum digit of iterations

or the required digit of clusters is reached.

Step1: Factbase Extraction

A factbase is the expression that includes input that the clustering algorithms are expected

to receive. The process of factbase extraction comprises the following steps: selecting a software

system, choosing a factbase source, preprocessing and filtering, choosing an entity, and

choosing features. [6][7][5][8]

1) Select the software system

To initiate the software module clustering process, it is necessary to specify the target

systems that will be subjected to clustering. [1]

Figure 1. Software module clustering process

http://www.minarjournal.com/

Volume 6, Issue 1, March 2024

93

www.minarjournal.com

2) Select the factbase source

The factbase include information about the target software systems, including software

components such as classes and their relationships, such as method calls. There are different

types of factbase sources. For example source code, Binary code, Bytecode, Human expertise,

Configuration files, Dynamic information, Data files, Files organization and Evolutionary

(historical) information. Factbases come in a variety of formats from a wide range of sources.

Within this context, commonly utilized objects include the "dependency graph," "vector-space

model," "software metrics," and the "extended dependency graph." [6][9][5][10]

3) Filtering and Preprocessing

Filtering plays a crucial role as a preprocessing step in all clustering operations within the

realm of software engineering. Its goal is to eliminate data that has been retrieved from source

codes that is not important or non-textual in order to reduce noise and improve the quality of

clustering results. [11][12]

4) Entity Selection.

When the Clustering aim is Software comprehension then the Input entities are Functions

and their call statements. On the other hand, Software classes, packages, modules, and files

are the input entities when the clustering goal is architectural recovery.

5) Feature Selection

For example, Formal and nonformal features are the two groups into which a class entity's

features can be divided. A class entity's nonformal qualities include things like the quantity of

variables and lines of code (LOC). While on another level, formal features consist of attributes

like method invocations and entity relationships. [13] [6] [14]

Step2: Similarity Calculation

Software module clustering involves the utilization of similarity metrics to evaluate the

attributes of each component to determine which is the most similar or different. The most

commonly used measures are "Euclidean distance", "Jaccard distance" and "Cosine distance".

[6] [15]

Step3: Cluster configuration

At this stage, clustering algorithms are applied to groups of similar entities in the target

system. Choosing an algorithm is itself a difficult process. In [7] authors propose a method to

help in this area. The study identifies the most common types of clustering algorithms frequently

utilized in the literature:

1) Hierarchical Clustering

Hierarchical clustering algorithms can be broadly categorized into two types:

agglomerative clustering and divisive clustering.

Agglomerative algorithms also known as bottom-up algorithms. Starts with singletons

(each element) and combine them until a single cluster is gained.

Divisive algorithms, also known as top-down algorithms, initiate the clustering process

with a single cluster that contains all n entities. The algorithm then proceeds to divide this initial

cluster iteratively until n clusters are obtained.[16]

2) Partitional clustering

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

94

www.minarjournal.com

This approach involves partitioning the set of entities into distinct and mutually ex-clusive

groups, ensuring that each entity is assigned to only one group. Each data point is assigned to

exactly one cluster, and the objective is to maximize or minimize a particular criterion, like the

inter-cluster or intra-cluster distance. Popular partitional clustering algorithms include k-means,

k-medoids, and fuzzy c-means.

Step 4: Visualization of the Clustering Results

After the software module clustering process, the Visualization is taking place to show the

results of clustering as dendrograms, graphs, or distribution maps [17]. The purpose of result

visualization is to make it easier for software engineers to explore the results efficiently and

easily.

Step 5: Evaluation Metrics of the Clustering

A variety of methods can be utilized to assess the efficacy of software clustering

algorithms. Figure 2 shows the evaluation methods most frequently used in the papers we

studied. The assessment techniques are summed up as follows:

Comparison with other results.

Modularization Quality (MQ). It evaluates the level of cohesion and coupling among

modules.

MoJo similarity metrics. Are employed to measure the degree of similarity between

the section produced by an expert and the piece produced by the software clustering

procedure.

Execution Time

Nonextremity cluster distribution (NED). A good clustering process is one that does

not contain a part with a large number of entities, and does not contain a part with a single

entity [18]

Cohesion, referred to as intraconnectivity, Evaluates the extent of connections

among modules within a cluster.[19]

Coupling, also known as interconnectivity Quantifies the level of communication or

interaction between software modules located in different clusters [19].

0 2 4 6 8

Comparison with other results

Stability

Nonextremity cluster distribution (NED)

Cohesion

Coupling

Precision measures

The recall measure

The F-measure

MoJo

Modularization Quality

Number of selected
papers

Figure 2. Number of selected papers vs. metrics of module clustering evaluation

http://www.minarjournal.com/

Volume 6, Issue 1, March 2024

95

www.minarjournal.com

Precision measures (in the same cluster) .The percentage of module pairs that are

assigned to different clusters by the clustering algorithm compared to the expert

decomposition.[20]

The recall measure, in the context of different clusters. Is the percentage of

module pairs in the expert decomposition that the clustering algorithm properly

detected. It indicates how well the clustering algorithm captures the modules identified by

the expert. [20] [6]

 Stability. If there are minor alterations between consecutive versions of a developing

software system, does the clustering process produces similar partitions and that what is

called Stability measures. [21] [6]

Human Experts. The weighted average of recall and precision is calculated to determine

the F-measure, a metric used to assess the accuracy of clustering techniques. It provides a

balanced assessment of their performance by considering both the ability to correctly

identify relevant items (recall) and the precision in avoiding false positives. [22] [6]

Related work

The authors highlighted a variety of software clustering methods and their applications

in the field of software engineering. They also examined several approaches for evaluating

software clustering results and discussed the challenges associated with enhancing its

performance.

37%

63%

Hierarchical clustering
algorithms

partitional clustering algorithms

Figure 3 Paper count vs. method of clustering

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

96

www.minarjournal.com

Name of

researcher

algorithm Application

Areas

Quality measure Result

“Jian Feng

Cui, Heung

Seok Chae”,

2011,[16]

Agglomerative

hierarchical

clustering

(AHC)

algorithms

Evaluate the

algorithms for

component

identification

in software

reengineering

Size, coupling, and

cohesion criteria

Different clustering

algorithms produced

different clustering

results.

“Fabian Beck

and Stephan

Diehl” , 2010 ,

[21]

Bunch, a

graph-based

clustering

algorithm

Support

information

recovery

MoJoFM metric The traditional

approach provides

better results

“linhui Zhong,

jing He,

nengwei

Zhang , peng

Zhang , jing

Xia” , 2016,

[23]

(AHC)

algorithm

Maintainability

of software

Module Quality- MQ The method improves

the accuracy and aids

in the refactoring

“Anna

Corazza,

Sergio Di

Martino,

Valerio

Maggio,

Giuseppe

Scanniello” ,

2019, [24]

Hierarchical

clustering

algorithm

Support

information

recovery

Authoritativeness(Auth)

and (NED)

Software system

clustering. Compared

to structural-based

solutions, it produces

better results

“Amit Rathee

and Jitender

Kumar

Chhabra”,

2017, [25]

Hierarchical

Agglomerate

Clustering

(HAC)

Maintainability Precision, recall, and F-

measure

The proposed

technique of software

remodularization

showed higher

accuracy against the

corresponding

software gold standard

.

http://www.minarjournal.com/

Volume 6, Issue 1, March 2024

97

www.minarjournal.com

As previously stated. Hierarchical clustering and partitional clustering are two common

forms of clustering algorithms that have been utilized in the literature, and they will both be

covered in the sections that follow. "Partitional Clustering" is the most widely utilized kind of

clustering, as Figure 3 illustrates.

A. Clustering based on hierarchy

A study was carried out, according to [16], utilizing a range of hierarchical clustering

principles, to examine how old object-oriented systems evolved into a different type of module-

based systems. The goal of this study is to discover whether there is a better clustering method.

Next, carry out a series of experiments for numerous outdated object-oriented systems using

various clustering algorithms. Using a

variety of parameters, including coupling and cohesion, an evaluation of the relative

strengths and weaknesses of the different hierarchical agglomerative clustering methods was

given based on the clustering findings.

The biggest focus of this study was on analyzing algorithms in light of software re-

engineering. The experimental findings demonstrated that different weighting schemes,

connection techniques, and similarity measurements had different effects on the component

identification outcomes. Results from several clustering algorithms varied in terms of clustering.

Talking about [21], Authors compares the results of evolutionary approaches with traditional

“Chun Yong

Chong and Sai

Peck Lee”,

2015, [26]

Unweighted

Pair-Group

Method using

Arithmetic

Average

(UPGMA)

Support

information

recovery

MoJoFM, Sorensen-

Dice coefficient

The results of the

evaluation showed that

the algorithm

successfully handled

constraints and

provided a better

understanding of the

analyzed software

system

“Monika

Bishnoi and

Paramvir

Singh”, 2016,

[18]

Weighted

Combined

Algorithm

(WCA) and

PSO

clustering

techniques

Maintainability TurboMQ The results

demonstrated that

augmenting the

number of iterations in

the Particle Swarm

Optimization (PSO) did

not have a substantial

influence on the overall

outcomes

Table 1. Hierarchical clustering algorithms

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

98

www.minarjournal.com

structural code dependency approaches. The study showed that the traditional approach

provides better results. In [23], a method is proposed for software clustering that incorporates

software evolution information. An expanded software dependency model is then constructed,

and software is clustered using the Agglomerative Hierarchical Clustering (AHC) algorithm. Tests

conducted on two publicly-available projects demonstrate that the technique enhances the

precision of software clustering and facilitates business software reworking. In the [24], the

usefulness of lexical information in software system clustering is examined. The study

demonstrated that appropriately weighted lexical information can be successfully used for

software clustering, yielding superior results than structural-based solutions. The study used a

dataset of thirteen open-source Java software systems.

The paper [25] proposes a software remodularization technique by eliciting conceptual

similarity between software component using structural and semantic coupling measures.

Hierarchical Agglomerate Clustering (HAC). The proposed technique of software

re_modularization, which combines structural and semantic coupling measurements, showed

higher accuracy against the corresponding software gold standard. The paper [26] proposes a

constrained agglomerative hierarchical clustering algorithm that merge pair-wise constraints to

improve the quality of software clustering. The algorithm determines if software components

belong to the same functional group by maximizing the satisfaction of must-link and cannot-link

requirements. The suggested algorithm's efficacy was assessed through two experiments

utilizing real-world software systems; the outcomes demonstrated its capacity to manage

restrictions and enhance the quality of clustering.. The paper [18] introduces a methodology for

enhancing software modularization by applying Particle Swarm Optimization (PSO) to optimize

the Weighted Combined Algorithm (WCA). [Table 1] Summarizes the methods of hierarchical

clustering algorithms.

http://www.minarjournal.com/

Volume 6, Issue 1, March 2024

99

www.minarjournal.com

Name of researcher algorithm Application

Areas

Quality

measure

Result

"Masoud Kargar,Ayaz

Isazadeh, Habib

Izadkhah " ,2019,[3]

Genetic

algorithm

Maintaining and

evolving software

systems

Precision,

Recall, FM,

and

MoJoFM

Modularization

close to human

experts

“Shohag Barman,

HiraLal Gope, M M

Manjurul Islam,

MdMehedi Hasan,

Umme Salma”, 2016,

[27]

Genetic

Algorithm-based

Software

Modularization

Clustering

(GASMC)

Maintenance and

improve the

program structure

 (MQ) Higher MQ and

lower standard

deviations

"Amarjeet , Jitender

Kumar Chhabra " ,

2015, [28]

Non-dominated

Sorting Genetic

Algorithms

(NSGA-II)

Improve the

modularization

quality and

organizing large

and complex

systems

NA Better

modularization

quality with

minimum

modification

“Simone Romano,

Giuseppe Scanniello,

Michele Risi,Carmine

Gravino” , 2011 [11]

Fuzzy c-means

clustering

algorithm called

Fanny for design

pattern recover

To improve the

recovery of design

patterns in source

code.

NA Improves the

correctness of the

results, while

preserving the

number of design

pattern instances

correctly identified.

"Pradeep Tomar and

Jagdeep Kaur” , 2016

[12]

Fuzzy clustering Organizing and

managing

software

components

NA The results of the

algorithm are

represented as

fuzzy clusters,

where are

components that

tend to lie in more

than two clusters

“Shumail Arshad,

Christos Tjortjis”, 2014,

[29]

 K-Means

clustering

algorithm

Maintainability NA Supports the

identification of

potentially

problematic code

parts

“Shumail Arshad and

Christos Tjortjis”, 2008,

[8]

K-Means

clustering

Maintainability NA The approach

supports the

process of

identifying

potentially

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

100

www.minarjournal.com

problematic parts

of the code that

require additional

inspection and

proactive

maintenance

“Amarjeet Prajapati ·

Jitender Kumar

Chhabra”, [2017],[30]

Particle Swarm

Optimization

(PSO) algorithm

To support

information

recovery

(MQ),

(NED),

coupling,

and

cohesion

measures

PSOMC approach

is effective for

solving SMCPs,

with higher MQ

values

“Jimin Hwa and Shin

Yoo”, 2017,[2]

Hill-climbing

algorithm

Comprehension

and maintenance

of complex

systems

 (MQ) Multi-factor

approach allows

for module clusters

of different

natures, capturing

both semantic and

structural

bondings.

"Masoud Kargar,Ayaz

Isazadeh, Habib

Izadkhah” , 2017, [31]

Hill-Climbing

Algorithms

Support

information

recovery

Turbo MQ (SDG) can be used

as a replacement

for (CDG) in

software

clustering.

“Abdulaziz Alkhalid ,

Mohammad Alshayeb ,

Sabri Mahmoud “2010

[13]

Adaptive K-

Nearest

Neighbor (A-

KNN)

Enhance the

understandability,

reduce the effort of

the maintenance,

and minimize the

costs associated

with software

evolution and

complexity.

Comparison

with other

results

The results showed

that the proposed

A-KNN algorithm

demonstrated

competitive

performance with

the other three

algorithms while

requiring less

computational

complexity.

“Jinhuang Huang, Jing

Liu”, 2017, [32]

Multi-agent

evolutionary

algorithm called

MAEA-SMCPs

Software

maintenance,

reusability,

understandability,

software testing,

and debugging

MQ MAEA-SMCPs is a

highly effective

algorithm for

software module

clustering

problems

http://www.minarjournal.com/

Volume 6, Issue 1, March 2024

101

www.minarjournal.com

B. Partitional clustering

Multi-programming language modularization was introduced, according to [3]. Next, a

method for modularizing applications written in several programming languages is presented.

The outcomes show that the suggested method can extract a modularization that is comparable

to that of human specialists. Provide only software clustering strategies in [27] that break down

huge software systems into smaller subsystems as research guidelines. The GASMC method

outperformed both Hill Climbing and GGA in terms of mean quality values (MQ) and standard

deviations. It displayed fewer standard deviations, indicating steady performance, and higher

MQ values, suggesting a better division of modules into clusters. Weighted class connections

and a multi-objective optimization approach are used by Chhabra and Jitender Kumar [28] to

improve the package structure of object-oriented applications. The paper suggests a multi-

objective optimization strategy to reduce the amount of class migration across current packages

and enhance the modularization quality of object-oriented systems.

The results demonstrate that the proposed approach improves modularization quality

while requiring the least amount of alteration to the original package structure. By utilizing the

concept of fuzzy relations, the authors of [12][11] present a method for selecting software

modules based on fuzzy clustering. Next, they use fuzzy clustering with lexical information to

increase the precision of source code design pattern recovery. Authors in [29] offered data mining

as a solution to the issue of gathering and evaluating metric values for big software systems

since it may extract information and uncover hidden patterns. Discrete particle swarm

optimization-based module clustering (PSOMC), a software module clustering technique based

on particle swarm optimization (PSO), is introduced by [30] in an effort to more effectively and

efficiently handle the large-scale SMCPs. In comparison to other competing approaches, the

suggested PSOMC approach produces clustering solutions with higher MQ values, indicating its

effectiveness and promise in solving SMCPs.

Next paper [31], Authors are proposing a new dependency graph, called semantic

dependency graph (SDG) to extraction tool sets for large-scale software systems. The results of

the paper show that the semantic dependency graph (SDG) can be used as a replacement for

the Call Dependency Graph (CDG) in software clustering. On the other hand, [2] proposes a

multi-factor module clustering method that addresses the following issues by enabling the

creation of module groups depending on numerous parameters: When using the technique, the

user must choose a factor without knowing which will work best. While some modules establish

more structural bondings, others may generate semantic ones. The paper [13] proposes a new

algorithm called Adaptive K-Nearest Neighbor (A-KNN) for function-level software refactoring.

We present MAEA-SMCPs in [32], a multi-agent evolutionary algorithm that uses module

relationships to determine acceptable grade software module clustering. Using software metrics

and data mining, Arshad and Tjortjis[8] suggest an automated approach to software

maintenance. In order to find difficult and complicated classes that could be prone to errors and

need proactive maintenance, the study use clustering algorithms. [Table 2] summarizes the

methods of partitional clustering algorithms.

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

102

www.minarjournal.com

C. Methods for Analyzing Purposes

Shtern and Tzerpos [7][33] reviewed the latest findings of software clustering algorithms,

discuss the advantages and weaknesses, and clarify directions for further research in the field

of software clustering, including algorithm development and improvement, in addition to

evaluating current algorithms. They also stated that the process of selecting appropriate

clustering algorithms is difficult, so they focused their study on software clustering algorithms.

Accordingly, they presented a method of selection based on specific needs.

The study provides formal descriptive templates for software clustering algorithms. The

same templates can be used to improve existing algorithms. The output of these algorithms is

called software system decomposition. In [9] the paper proposes a novel static concept location

technique that combines textual information and structural dependencies in source code, and it

outperforms a baseline approach in terms of effectiveness. It is utilized to enhance the

identification of locations where modifications are to be made in response to requests for

modifications. Researchers [20] present an automated technique that applies self-adaptive

evolution strategies to increase the quality of software clustering, which helps in decomposing

complex software systems into smaller subsystems that can be controlled and managed.

Compared with the genetic algorithm-based approach, it shows better quality in test results.

The paper [22] proposes the use of object-oriented analysis and clustering operations in addition

to the chi-square test to predict software quality. This method aims to increase the prediction

accuracy of software quality. by highlighting the relationships between software components

and their attributes. Usage Pattern Based cohesiveness (UPBC), a new cohesiveness metric for

object-oriented software that is calculated at the module level, is proposed in [34]. It utilized to

break down the complexity of the software's modules to increase maintainability.

According to [4], It highlights the application of clustering tools and methods to rank web

services based on the similarity of clusters. Thus, we can obtain the required service faster from

large data sets, The study also emphasizes the significance of similarity computation and actual

user surveys in assessing the utility and efficacy of clustering techniques in web service

discovery. Next paper [14] proposes an approach to evaluate software clustering algorithms in

the context of program comprehension by utilizing interaction logs from previous maintenance

sessions. The study evaluates the performance of different clustering techniques.

Conclusion

http://www.minarjournal.com/

Volume 6, Issue 1, March 2024

103

www.minarjournal.com

This paper demonstrates cutting-edge experimental contributions in software module

clustering. As a result, the methods and tools utilized for these purposes were identified in order

to ensure the applicability of modern clustering techniques in the field of software engineering

and to enable the clustering process. A total of 36 publications from literature databases that

were released between 2008 and 2020 were taken into consideration for the software module

clustering analysis in this study. The studies were carefully and professionally reviewed and

analyzed from different perspectives to achieve sufficient understanding. Next, the software

cluster applications were classified.

We discuss all the algorithms, target software systems, and evaluations that enabled the

compilation process. In conclusion, new researchers may find it difficult to handle many facets

of the topic of software module clustering due to the volume of research works in the area. As a

result, we suggest using this analytical survey as a useful resource to help with the process of

obtaining the most pertinent data.

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

104

www.minarjournal.com

REFERENCES

[1] A. Adolfsson, M. Ackerman, and N. C. Brownstein, “To Cluster, or Not to Cluster: An

Analysis of Clusterability Methods,” Aug. 2018, doi: 10.1016/j.patcog.2018.10.026.

[2] J. Hwa, S. Yoo, Y. S. Seo, and D. H. Bae, “Search-Based Approaches for Software Module

Clustering Based on Multiple Relationship Factors,” International Journal of Software

Engineering and Knowledge Engineering, vol. 27, no. 7, pp. 1033–1062, Sep. 2017, doi:

10.1142/S0218194017500395.

[3] M. Kargar, A. Isazadeh, and H. Izadkhah, “Multi-programming language software systems

modularization,” Computers and Electrical Engineering, vol. 80, Dec. 2019, doi:

10.1016/j.compeleceng.2019.106500.

[4] Adhiparasakthi Engineering College. Department of Electrical and Electronics

Engineering, Adhiparasakthi Engineering College, and Institute of Electrical and Electronics

Engineers, 2017 International Conference on Computation of Power, Energy, Information and

Communication (ICCPEIC).

[5] V. Singh, “Software module clustering using metaheuristic search techniques: A survey,”

in 2016 3rd International Conference on Computing for Sustainable Global Development

(INDIACom), IEEE, 2016, pp. 2764–2767.

[6] Q. I. Sarhan, B. S. Ahmed, M. Bures, and K. Z. Zamli, “Software Module Clustering: An In-

Depth Literature Analysis,” Dec. 2020, [Online]. Available: http://arxiv.org/abs/2012.01057

[7] M. Shtern and V. Tzerpos, “Methods for Selecting and Improving Software Clustering

Algorithms.”

[8] S. Arshad and C. Tjortjis, “Clustering software metric values extracted from C# code for

maintainability assessment,” in ACM International Conference Proceeding Series, Association

for Computing Machinery, May 2016. doi: 10.1145/2903220.2903252.

[9] G. Scanniello and A. Marcus, “Clustering support for static concept location in source

code,” in IEEE International Conference on Program Comprehension, 2011, pp. 1–10. doi:

10.1109/ICPC.2011.13.

[10] “EEE 4 th International Conference on Knowledge-Based Engineering and Innovation

(KBEI) I,” 2017.

[11] S. Romano, G. Scanniello, M. Risi, and C. Gravino, “Clustering and lexical information

support for the recovery of design pattern in source code,” in IEEE International Conference

on Software Maintenance, ICSM, 2011, pp. 500–503. doi: 10.1109/ICSM.2011.6080818.

[12] IEEE Staff, 2016 1st India International Conference on Information Processing (IICIP). IEEE,

2016.

[13] A. Alkhalid, M. Alshayeb, and S. Mahmoud, “Software refactoring at the function level

using new Adaptive K-Nearest Neighbor algorithm,” Advances in Engineering Software, vol.

41, no. 10–11, pp. 1160–1178, 2010, doi: 10.1016/j.advengsoft.2010.08.002.

[14] IEEE Staff, 2013 IEEE 21st International Conference on Program Comprehension. IEEE,

2013.

http://www.minarjournal.com/

Volume 6, Issue 1, March 2024

105

www.minarjournal.com

[15] G. Scanniello, A. D’Amico, C. D’Amico, and T. D’Amico, “Using the Kleinberg algorithm

and vector space model for software system clustering,” in IEEE International Conference on

Program Comprehension, 2010, pp. 180–189. doi: 10.1109/ICPC.2010.17.

[16] J. F. Cui and H. S. Chae, “Applying agglomerative hierarchical clustering algorithms to

component identification for legacy systems,” Inf Softw Technol, vol. 53, no. 6, pp. 601–614,

Jun. 2011, doi: 10.1016/j.infsof.2011.01.006.

[17] B. Nasim Adnan, “CLUSTERING SOFTWARE SYSTEMS TO IDENTIFY SUBSYSTEM

STRUCTURES USING KNOWLEDGEBASE,” 2010.

[18] International Conference on Computational Techniques in Information and

Communication Technologies 2016 Delhi, International Conference on Computational

Techniques in Information and Communication Technologies 2016.03.11-13 New Delhi, and

ICCTICT 2016.03.11-13 New Delhi, 2016 International Conference on Computational

Techniques in Information and Communication Technologies (ICCTICT) proceedings : March 11-

March 13, 2016, New Delhi, India.

[19] A. C. Kumari and K. Srinivas, “Hyper-heuristic approach for multi-objective software

module clustering,” Journal of Systems and Software, vol. 117, pp. 384–401, Jul. 2016, doi:

10.1016/j.jss.2016.04.007.

[20] B. Khan, S. Sohail, and M. Y. Javed, “Evolution strategy based automated software

clustering approach,” in Proceedings of the 2008 Advanced Software Engineering and its

Applications, ASEA 2008, 2008, pp. 27–34. doi: 10.1109/ASEA.2008.17.

[21] F. Beck and S. Diehl, “Evaluating the Impact of Software Evolution on Software

Clustering.”

[22] International Conference on Applied and Theoretical Computing and Communication

Technology 1. 2015 Davangere, S. K. Niranjan, M. Aradhya, Institute of Electrical and

Electronics Engineers Bangalore Section, International Conference on Applied and Theoretical

Computing and Communication Technology 1 2015.10.29-31 Davangere, and ICATccT 1

2015.10.29-31 Davangere, Proceedings of the 2015 International Conference on Applied and

Theoretical Computing and Communication Technology (iCATccT) 29-31 October 2015,

Davangere, Karnataka, India.

[23] L. Zhong, J. He, N. Zhang, P. Zhang, and J. Xia, “Software evolution information driven

service-oriented software clustering,” in Proceedings - 2016 IEEE International Congress on Big

Data, BigData Congress 2016, Institute of Electrical and Electronics Engineers Inc., Oct.

2016, pp. 493–500. doi: 10.1109/BigDataCongress.2016.75.

[24] A. Corazza, S. Di Martino, V. Maggio, and G. Scanniello, “Investigating the use of lexical

information for software system clustering,” in Proceedings of the European Conference on

Software Maintenance and Reengineering, CSMR, 2011, pp. 35–44. doi:

10.1109/CSMR.2011.8.

[25] A. Rathee and J. K. Chhabra, “Software remodularization by estimating structural and

conceptual relations among classes and using hierarchical clustering,” in Communications in

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

106

www.minarjournal.com

Computer and Information Science, Springer Verlag, 2017, pp. 94–106. doi: 10.1007/978-981-

10-5780-9_9.

[26] C. Y. Chong and S. P. Lee, “Constrained agglomerative hierarchical software clustering

with hard and soft constraints,” in ENASE 2015 - Proceedings of the 10th International

Conference on Evaluation of Novel Approaches to Software Engineering, SciTePress, 2015, pp.

177–188. doi: 10.5220/0005344001770188.

[27] S. Barman, H. Gope, M. M. Manjurul Islam, M. Hasan, and U. Salma, “Clustering

techniques for software engineering,” Indonesian Journal of Electrical Engineering and

Computer Science, vol. 4, no. 2, pp. 465–472, Nov. 2016, doi: 10.11591/ijeecs.v4.i2.pp465-

472.

[28] Amarjeet and J. K. Chhabra, “Improving package structure of object-oriented software

using multi-objective optimization and weighted class connections,” Journal of King Saud

University - Computer and Information Sciences, vol. 29, no. 3, pp. 349–364, Jul. 2017, doi:

10.1016/j.jksuci.2015.09.004.

[29] S. Arshad and C. Tjortjis, “Clustering software metric values extracted from C# code for

maintainability assessment,” in ACM International Conference Proceeding Series, Association

for Computing Machinery, May 2016. doi: 10.1145/2903220.2903252.

[30] A. Prajapati and J. K. Chhabra, “A Particle Swarm Optimization-Based Heuristic for

Software Module Clustering Problem,” Arab J Sci Eng, vol. 43, no. 12, pp. 7083–7094, Dec.

2018, doi: 10.1007/s13369-017-2989-x.

[31] IEEE Staff, 2017 International Symposium on Computer Science and Software Engineering

Conference (CSSE). IEEE, 2017.

[32] J. Huang, J. Liu, and X. Yao, “A Multi-agent Evolutionary Algorithm for Software Module

Clustering Problems.” [Online]. Available: http://see.xidian.edu.cn/faculty/liujing/

[33] M. Shtern and V. Tzerpos, “Clustering Methodologies for Software Engineering,” Advances

in Software Engineering, vol. 2012, pp. 1–18, May 2012, doi: 10.1155/2012/792024.

[34] A. Rathee and J. K. Chhabra, “Improving Cohesion of a Software System by Performing

Usage Pattern Based Clustering,” in Procedia Computer Science, Elsevier B.V., 2018, pp. 740–

746. doi: 10.1016/j.procs.2017.12.095.

http://www.minarjournal.com/

