Received: 02/10/2022

Accepted: 20/10/2022

POTENTIALS OF EMPLOYING LEAN CONSTRUCTION IN IRAQ

Jamal S. NAYYEF 1

Istanbul Gedik University, Turkey

Redvan GHASEMLOUIA

Istanbul Gedik University, Turkey

Zeyad S. M. KHALED

Dijlah University College, Iraq

Abstract:

Successful construction projects are those to be completed within the planned time, cost and quality, in addition to minimizing waste, pollution and energy consumption. It is believed that adopting lean principles in the construction industry can help a lot in achieving these goals. This research aims at studying the benefits, obstacles and readiness to adopt lean construction in Iraq and the actions needed. A questionnaire was designed based on extensive review of relevant literature and then directed to (123) professionals involved in the Iraqi construction industry. The results were statistically analyzed and tested and found to be valid and reliable. Contradictions of very few aspects were then discussed and clarified through direct interviews with (10%) of the questionnaire respondents. The research revealed that the Iraqi construction industry is in need of all potential benefits that lean construction can provide through value maximization and using modern construction techniques. The research also revealed that the main obstacles are lack of expertise, skills, awareness and knowledge in lean principles and poor culture related to waste identification and control. Concerning the readiness success factors, more emphasis was made to the integration of design, manufacture and construction and life-cycle engineering. Finally, proactive actions were suggested on national and institutional scales taking into account that the major role to shift to lean construction rests with the government and the construction sector leaders.

Keywords: Lean Thinking, Lean Production, Lean Construction, Construction Industry, Construction Projects.

⁶⁰<u>http://dx.doi.org/10.47832/2717-8234.13.19</u>

engjamal70@gmail.com, https://orcid.org/0000-0002-7089-0243

Introduction:

The Iraqi infrastructure has been exposed to destruction as a result of wars since 1980's and to deterioration due to the economic blockade (1991-2003). Furthermore, the governments formed after 2003 fail to activate this industry, so there is an enormous shortage in all types of public services. Moreover, there is a lack of qualified private contractors and governmental supervisory staff, while both are using traditional technology and outdated techniques. Therefore, many problems are encountered by the Iraqi construction industry including time and cost overrun and low quality accompanied with high rates of materials and energy waste. Meanwhile, this important and vital industry is still hesitated to adopt lean construction and to gain its benefits in order to mitigate these defects. This necessitates studying the potentials of adopting lean construction in Iraq and proposing actions (Mohammed, and Jasim, 2018).

Lean thinking focuses on decreasing waste in materials and processes, starting with design and proceeds through production and beyond. It is also about enhancing speed, efficiency, and quality. This necessitates a significant amount of effort to cultivate a lean culture among the relevant constituencies, which, in turn, results in increased value for all stakeholders (**Blokdyk, 2019**).

Many advantages in adopting lean construction have been recognized by many researchers. These benefits can be summarized as: eliminating waste, lowering costs, increasing productivity, shortening duration, reducing inventory, enhancing quality, and improving safety (Womack and Jones, 2010; Vilasini et al., 2011; Modi and Thakkar, 2014; Akinradewo et al., 2018).

According to several studies carried out in other countries, barriers to adopt lean construction can be categorized in six primary groups including: managerial, financial, educational, governmental, technical, and human attitude (**Olatunji**, 2008; Jorgensen and Emmitt, 2008; Abdullah et al., 2009; Mossman, 2009; Alinaitwe, 2009; Forbes and Ahmed, 2020).

According to (Le Gratiet, 2017), the best practices needed for Lean Construction are: setting clear objectives for the delivery process, maintaining maximum performance at the project level, concurrent design of processes and products, and applying production control all along the project life. These practices mean that lean construction management performs on the project holistic scale rather than on individual activity scale. To do so, proper techniques is needed. The widely implemented lean construction techniques found in the relevant literature can be summarized in the following: The Last Planner System (Ballard and Tommelein, 2016), Just-in-Time (Enshassi et al., 2020), The Japanese 5S Method (Gao and Low, 2014), Poka-yoke Mistake-Proofing (Tommelein and Demirkesen, 2018), Visual Management (Singh and Kumar, 2020), Target Value Design (Khah et al., 2019), Value Stream Mapping (Demirkesen, 2013) and Daily Huddle Meetings (Enshassi et al., 2019).

Literature Review

Recent studies, that are relevant to this research, are summarized in Table (1).

Sarhan	Studied the barriers to implement	The high ranked barriers found
et al.		were: persistence of outdated practices, disapproving organization culture,
		absence of relevant technical skills and lack of knowledge of lean principles.
Small et al.	Examined the chances for	5 5
m (2017)	integrating the lean concepts in the constructing industry of Dubai using a questionnaire survey addressed to professionals.	barriers.
Dede	Investigated waste sources and	
III (2018)	construction sector. Five construction companies were interviewed about the most common waste reasons.	inefficient planning and control which may be avoided by employing lean techniques accompanied with BIM.
Mustonen	Studied the contribution of a lean	8
in (2018)	scheduling', to site management activities through interviews and site	anticipated execution with better constructability and unified objectives.
Yusof	Developed a lean design process	
in (2018)		building design process is essential and a list of construction-related wastes can also be previously developed.
Albanna	Developed an instrument to	
in (2015)	ideas in the construction industry of Lebanon using a questionnaire survey.	from misunderstanding of waste-related concepts and waste types, lean pull production practices and knowledge, site organization and standardization concepts.
Amunzu	Conducted an investigation of	0 0
(2020)		strengths of the lean thinking framework of the Toyota Production System (TPS) in the construction industry.
Yuan et al.	Conducted a study on	The barriers were found to be
III (2020)	covered the evaluation of organizational capability against barriers, based on literature analysis, field survey, questionnaire surveys and interviews.	related to management, skills and knowledge, the construction industry itself, supply chain and degree of prefabrication.
Gupta et al.	Carried out a review on the	-
in (2020)	implementation in India. A survey of	lack of experience and information sharing, lack of training and awareness, and lack of technical skills.

Table 1: Summary of relevant recent studies

	Koohestani	1 5	
	et al.	to find a way to implement lean	project-related factors have a greater
	• (2020)	construction in Iran.	impact on the lean construction adoption
	in (2020)		than external factors.
	Demirkesen	Developed a model for lean	The developed model showed that
	and	implementation in the constructing	lean training, accessibility of lean tools
		industries in Turkey. A questionnaire	and methods were the chief elements that
	Bayhan	survey was carried out using Delphi	have effects upon the success of lean
	in (2020)	method.	implementing.
		Deviloped the footone of	
	Aslam et al.	Explored the factors of	
	in (2020)	implementing lean construction for rapid	-
		initial success in Pakistan through a self-	
		structured questionnaire.	improving results and processes through
			commitment and collaboration by all
			project participants.
	Al-Balkhy	Evaluated the challenges to lean	It was found that all stakeholders
et al.		construction adoption in Jordan using a	have similar perspectives on the
	in (2021)	questionnaire survey.	challenges.
	Watfa	Carried out a research in the UAE	It was found that lean
	and	on the critical success factors for lean	construction principles are not
		construction. A survey was conducted by	extensively adopted in the UAE, with just
	Sawalha	· · ·	28% of the enterprises assessed know
	in (2021)	consisted of professionals.	about or already employ lean techniques.

Methodology

A questionnaire was designed based on extensive literature review on lean construction concepts, techniques, challenges and success factors in order to reach Iraqi experts opinions. The questions were classified into parts and sections in order to facilitate feedback on the possibility of applying lean construction in Iraq by investigating and ranking the benefits, obstacles, readiness success factors, and the actions needed based on Likert's five degrees scale.

The questionnaire was directed to (160) professionals from Public and Private Sectors including governmental administrations, contracting companies, consultancy bureaus, laboratory centers, material manufacturers and suppliers, equipment providers and academics. However, (123) responses were received. The findings were displayed and examined using applicable statistical tests. The gathered answers included description and ratings of various factors. Descriptive statistical measures and ranking were conducted. The results were subjected to statistical analysis using SPSS (Statistical Package) V.24.

The five-point Likert scale was transformed to relative importance indices (RII) for each factor in the questionnaire using Eq. (1) (**Ozdemir, 2010**):

$$RII = \left(\frac{\Sigma W}{A*N}\right) \tag{1}$$

where:

W: is the weight given by the respondents within the range of (0 - 4),

A: is the highest weight given by the respondents (for each factor) and

N: is the total number of respondents.

The statistical measures used included the following:

- Mean Percentage Error (MPE):

$$MPE = \left(\sum_{A} \frac{A-E}{A} / n \right)^* \ 100\% \tag{2}$$

where:

A: actual value,

E: estimated value or predicted value, and

n: total number of cases.

- Root Mean Squared Error (RMSE):

$$\mathbf{RMSE} = \sqrt{\frac{\sum_{i=1}^{n} (\mathbf{E} - \mathbf{A})^{2}}{n}}$$

(3)

- Mean Absolute Percentage Error (MAPE):

$$MAPE = \left(\sum \frac{|A-E|}{A} * 100\%\right)/n \qquad (4)$$
- Average Accuracy Percentage (AA%):

AA% = 100% - MAPE

- The Coefficient of Determination (R²).

- The Coefficient of Correlation (R).

- The Cronbach's coefficient (alpha) measure was used to check the reliability and validity of the results using formula (6) for reliability test and formula (7) for validity test. The values between (0.0) to (1.0) are considered as the normal range for Cronbach's coefficient (alpha) (**Gunduz and Abu-Hassan, 2017**).

where:

K: is the number of items in a group.

 S_i^2 : is the variance associated with item (i).

 S_t^2 : is the variance associated with the sum of all (k) item scores

- Shapiro-Wilk test was carried out to identify whether the results of the questionnaire are normally distributed. Normal distribution of data is attained when the P-value of Shapiro-Wilk test is more than (0.05) and the skewness and kurtosis measures are close to zero. A small departure from zero is found in real world and it is statistically acceptable as long as the standard error is very much smaller than variable values i.e. the Z-values related to skewness and kurtosis is between (-1.96 and 1.96) using formulae (3.8) and (3.9) (**Hasan**, **2015**).

$Z_{skewness} = \frac{Skewness}{Std.errors}$	•••••
(8)	
$Z_{\text{kurtosis}} = \frac{\text{kurtosis}}{\text{Std.errors}}$ (9)	

Further questions aroused after collecting and analyzing the questionnaire results, therefore, they were elaborated through interviews with (10%) of the respondents using a structured interview sheet. The interviews were held face-to-face with discussion being conducted.

(5)

.

The Questionnaire Results

The first part of the questionnaire was designated to disclose information about the participants and their organizations. The results are summarized in Table (2).

Organization work secto	*			Public					Priva	ate	
organization work secto	-		10	8 (87.8	%)			15	5 (12.2%)		
			(Client		Consultant		(Contractor		
Organization type of bus	inoc	~	35	(28.5%))	41	41 (33.3%)			24 (19.5%)	
organization type of bus	mes	3	Man	ufactur	er	S	up	plier	1	Academics	
			2	(1.6%)		1:	3 (2	.4%)		8 (14.6%)	
	E	Buildi	ngs	0	hways ridges			ater Suppl & Sewerage		Irrigation	
Organization field of	73	8 (63	.4%)	9 (*	7.3%)			4 (3.3%)		1 (0.8%)	
practice		ndust Facili			ctrical ants			ommunications Networks		Others	
	,	7 (5.7	7%)	16 (1	16 (13.0%)			2 (1.6%)		6 (4.9%)	
Classification rank			Civi	1		Me	echa	anical/Ele	ctric	al/Chemical	
(only for contractors)			14 (73.	73.5%)				5 (26	6.5%	b)	
		Тор		Middle			Site			Supportive	
Respondent position	Ma	inage	ment	Managemen		nt	Managemen		Management		
	34	4 (27		· · ·	35.8%)		27	7 (22.0%)		18 (14.6%)	
Respondent academic de			Ph	nD	M	ISc		BSc		Others	
Respondent academic d	gree	•	27 (22	2.0%)	17 (1	13.8%	ó)	76 (61.8	5%)	3 (2.4%)	
		Civ	ril Engin	neers	Arch	itect	s	Mechani	cal	Electrical	
Respondent specialization	~~	(58 (55.3	3%)	11 (8.9%)	18 (14.6	%)	20 (16.3%)	
Respondent specialization		Con	nmunic	ations	Higł	iways	S	Chemical		Others	
			1 (0.8%	6)	1 (0).8%)		0 (0.0%)		4 (3.3%)	
Respondent years of exp	Respondent years of experience i			n (6 – 10)		1 – 15	5)	(16 – 20)		(> 20)	
the construction industr	y		22 (17.9%)	29	(23.6	%)	39 (31.7	7%)	33 (26.8%)	

Table 2: General information about the respondents

The respondents' opinions about the possible benefits of implementing lean construction in Iraq are summarized in Table (3).

Factors]	Resp	onder	nts' Ra	ankin	g	Mean	SD	RII%*	Ranking	
Factors	F/%	1	2	3	4	5	mean	50	KII% "	Kalikilig	
Earlier completion time	F	8	6	59	31	19	2 2 2 0 1	1.02045	67 640	3	
with greater certainty	%	6.5	4.9	48	25.2	15.4	3.3621	1.02045	07.042	3	
Cost saving with higher	F	7	7	60	30	19	2 2 2 0 1	1.00426	67 640	2	
profitability	%	5.7	5.7	48.8	24.4	15.4	3.3621	1.00420	67.642	2	
Better quality assurance	F	4	13	56	25	25	2 4 2 0	1.03343	68.78	1	
with greater reliability	%	3.3	10.6	45.5	20.3	20.3	3.439	1.03343	00.70	1	
Higher productivity with	F	5	10	60	32	16	2 2577	0.95067	67 154	4	
less labour & inventory	%	4.1	8.1	48.8	26	13	3.3377	0.95007	07.154	4	
Controlled environment	F	4	13	62	24	20	2 2406	0.98333	66.000	5	
with lower hazards	%	3.3	10.6	50.4	19.5	16.3	3.3490	0.96555	00.992	5	
Sustainability	F	8	15	56	23	21					
enhancement with less	%	6.5	10.0	15 5	18.7	17 1	3.2764	1.0887	65.528	6	
energy	/0	0.5	12.2	43.5	10.7	11.1					
* RII: is the Relative Impo	ortanc	e Ind	lex.								

Table 3: Ranking of the possible benefits of lean construction

The respondents' opinions on the obstacles against lean construction adoption in Iraq were classified into exogenous and endogenous ones. Exogenous obstacles are those that are out of the institution control, while endogenous ones are within its intention. It can be noticed

in Table (4), that the influences of the exogenous obstacles were higher than the endogenous ones.

	1	Posn	onder	nts' Ra	nkin	~			_	
Factors	F/%	1	2	3	4	s 5	Mean	SD	RII%*	Ranking
Exogenous Obstacles	1 / /0	-	~	Ŭ	•	Ŭ	3.5535	0.76474	71.07	1
Absence of government	F	2	10	60	22	29				_
support	%	1.6	8.1	48.8	17.9	23.6	3.5366	0.99419	70.732	6
Lack of awareness and	F	4	9	43	30	37	2 7072	1 07(00	74 146	0
knowledge	%	3.3	7.3	35	24.4	30.1	3.7073	1.07682	74.146	2
Lack of a long-term	F	4	6	52	31	30	3.626	1.0114	72.52	5
vision.	%	3.3	4.9	42.3	25.2	24.4	3.020	1.0114	12.32	5
Fragmented nature of	F	1	16	54	30	22	3 4553	0.96029	69.106	9
the industry	%	0.8	13	43.9	24.4	17.9	5.+555	0.90029	09.100	9
Many parties joined the	F	2	10	49	32	30	3.6341	0.99398	72.682	4
project	%	1.6	8.1	39.8	26	24.4	0.0011	0.55050	12.002	•
Inefficient transportation		2	14	51	32	24	3.5041	0.98658	70.082	7
and logistics	%	1.6	11.4	41.5	26	19.5	010011	0190000		-
Hard to obtain	F	2	14	57	24	26	0 4715	1 00000	60.40	0
technology and standardization	%	1.6	11.4	46.3	19.5	21.1	3.4715	1.00266	69.43	8
Initial and additional	F	2	13	60	28	20				
costs	%	1.6	10.6	48.8	22.8	16.3	3.4146	0.94024	68.292	11
Weak stakeholders'	F	8	11	59	21	24		1 00067		10
intention	%	6.5	8.9	48	17.1	19.5	3.3415	1.09267	66.83	12
Lack of engineers	F	3	10	40	25	45				
expertise and workers skills	%	2.4	8.1	32.5	20.3	36.6	3.8049	1.09887	76.098	1
Lack of transparency	F	6	11	41	22	43	0.0011	1 10104	70.000	0
and integrity	%	4.9	8.9	33.3	17.9	35	3.6911	1.18134	73.822	3
Improper environmental	F	5	17	45	29	27	0.4550	1 10000	co 100	10
conditions	%	4.1	13.8	36.6	23.6	22	3.4553	1.10329	69.106	10
Endogenous Obstacles							3.2846	0.74029	65.692	2
Lack of	F	11	12	59	26	15				
contractor/supplier involvement	%	8.9	9.8	48	21.1	12.2	3.1789	1.0638	63.578	10
Lack of prefabrication	F	1	20	67	20	15	2 0076	0.89455	64.552	7
Lack of prelabilication	%	0.8	16.3	54.5	16.3	12.2	3.2270	0.09433	04.332	1
Uncertainty in	F	3	18	69	17	16	3.2033	0.93177	64.066	9
production process	%	2.4	14.6	56.1	13.8	13	3.2033	0.93177	04.000	9
Lack of identification	F	1	21	58	25	18	3 3089	0.95067	66.178	3
and control of waste	%	0.8	17.1	47.2	20.3	14.6	0.0009	0.90001	00.170	Ŭ
High turnover of	F	4	14	64	24	17	3.2927	0.95584	65.854	5
workforce	%	3.3	11.4	52	19.5	13.8				_
Lack of long-term	F	3	21	71	16	12	0.1057	0.00504	CO 114	1 1
relationship with suppliers	%	2.4			13	9.8	3.1057	0.88534	62.114	11
Multilayer	F	6	10	66	17	24	3.3496	1.04005	66.992	2
subcontracting	%	4.9	8.1	53.7	13.8	19.5				_
Stress and pressure in	F	6	14	61	25	17	3.2683	1.0006	65.366	6
deadlines	%	4.9	11.4		20.3	13.8				
Poor team work culture	F	5	7	49	24	38	3.6748	1.09766	73.496	1
	%	4.1	5.7	39.8	19.5	30.9				
Absence of feedback	F	5	15	61	22	20	3.3008	1.01574	66.016	4
	%	4.1	12.2	49.6	17.9	16.3				
Losing some jobs due to work changes	F %	3 2.4	21 17.1	62 50.4	20 16.3	17 13.8	3.2195	0.9712	64.39	8
* RII: is the Relative Impo	ortanc	e Ind	ex.							

Table 4: Ranking of the obstacles against lean construction adoption

The respondents' opinions on the readiness of the Iraqi construction industry to successfully adopt lean construction were investigated on two scales; national and institutional scales. The results are summarized in Table (5). The influences of the readiness success factors on national scale were found to be higher than the readiness success factors

on institutional scale. This indicates that the major role in shifting to lean construction rests with the government and the construction sector leaders.

Factors		espo	onder	nts' R	ankiı	ıg	Mean	SD	DII0/.*	Ranking
	F/%	1	2	3	4	5				Kalikilig
On national scale							3.4869	0.83215	69.738	1
Government strategy and	F	5	11	50	22	35	2 5770	1.11626	71 544	3
commitment	%	4.1	8.9	40.7	17.9	28.5	3.3772	1.11020	71.544	3
Demand and market	F	0	19	54	23	27	2 4715	1.00266	60.42	6
conditions	%	0	15.4	43.9	18.7	22	5.4715	1.00200	09.43	0
Technology transfer	F	4	17	58	26	18	3 3008	0.99123	66 016	9
	%	3.3	13.8	47.2		14.6	3.3008	0.99123	00.010	9
Awareness and knowledge	F	6	16	54	23	24	3 3496	1.08631	66 992	7
Awareness and knowledge	%	4.9	13	43.9		19.5	5.5490	1.00001	00.992	'
Expertise and skills	F	5	7	53	20	38	3 6423	1.10238	72 846	1
	%	4.1	5.7	43.1	16.3	30.9	5.0725	1.10250	12.040	1
Design and process	F	3	11	57	27	25	3 4878	0.99479	69 756	5
standardization	%	2.4	8.9	46.3	22	20.3	3.4070	0.99419	09.730	5
Information and	F	3	10	50	30	30	2 6016	1 00001	70.020	0
communication technology	%	2.4	8.1	40.7	24.4	24.4	3.0010	1.02221	12.032	2
D 1 11 1 1	F	2	14	62	19	26	2 4200	1 00067	<u> </u>	0
Research and development	%	1.6	11.4	50.4	15.4	21.1	3.4309	1.00067	68.618	8
Coordination/collaboration	F	1	12	55	32	23	0 5000	0.00510	70.400	
between parties	%	0.8	9.8	44.7	26	18.7	3.5203	0.93519	70.406	4
On institutional scale							3.4339	0.81093	68.678	2
Dessioners and finances	F	6	11	51	26	29				
Business and finance	%	4.9	8.9	41.5	21.1	23.6	3.4959	1.09675	69.918	4
	F	3	10	61	20	29	0 5041	1 01007	70 090	0
Facilities and equipment	%	2.4	8.1	49.6	16.3	23.6	3.5041	1.01927	70.082	3
Design, manufacture &	F	3	11	48	27	34	0.0041	1 0570	70 (00	1
construction integration	%	2.4	8.9	39	22	27.6	3.6341	1.0579	72.682	1
Constructability and life-	F	0	12	56	25	30	0 5005	0.06500	71.07	0
cycle engineering	%	0	9.8	45.5	20.3	24.4	3.5935	0.96528	71.87	2
Organization and	F	1	19	53	22	28	0.4604	1 00450	60.060	C
leadership	%	0.8	15.4	43.1	17.9		3.4634	1.03459	69.268	6
	F	3	13	56	26	25	0 4 6 0 4	1 01054	60.060	-
Planning and control	%	2.4	10.6	45.5	21.1	20.3	3.4634	1.01054	69.268	5
Procurement and	F	4	16	66	19	18	2 050	0.07160	65.04	11
contracting strategy	%	3.3	13	53.7	15.4	14.6	3.252	0.97168	65.04	11
Supply and storage	F	1	21	62	21	18	2 0764	0 0 4 2 4 0		0
management	%	0.8	17.1			14.6	3.2764	0.94349	05.528	9
	F	0	18	59	23	23	2 1110	0.05751	60.000	7
Cost and risk management	%	0	14.6	48	18.7	18.7	3.4146	0.95751	08.292	7
Transportation and	F	4	17	64	19	19	2 0 0 0 0	0.00040		10
logistics	%	3.3	13.8	52	15.4		3.2602	0.99042	05.204	10
Quality assurance and	F	4	15	56	22	26	0 4145	1 05505	<u> </u>	6
work environment	%	3.3		45.5			3.4146	1.05525	68.292	8
* RII: is the Relative Import	ance					•		•		•

Table 5: Ranking of the readiness success factors

The respondents' opinions on the proposed actions needed to adopt lean construction in Iraq were classified into: knowledge and skills aspects, financial aspects, quality aspects, productivity aspects and management aspects and then investigated. It can be noticed in Table (6), that the influence of 'financial support' was the highest followed by 'productivity improvement', 'management enhancement', 'knowledge and skills leverage' and finally 'quality assurance'.

		0000	ndor	its' R	o m Irir					
Factors	F/%	lespe	2	3	4 4	5	Mean	SD	RII%*	Ranking
Knowledge/skills	r / /0	-	4	Ŭ	Т	Ŭ	3.4439	0.87798	68.878	4
leverage:	-						011105	0.01.70		•
Academic education	F	4	14	55	28	22	3.4065	1.01495	68.13	3
	%	3.3		44.7						
Consultants'	F	5	12	47	29	30	3.5447	1.08833	70.894	1
development programs	%	4.1	9.8		23.6				-	
Manufacturers' & Contractors' dev.	F	6	14	53	28	22	3.374	1.05891	67.48	4
programs	%	4.9		43.1			3.374	1.05691	07.40	4
Labour training	F	1	12	56	28	26	3 5366	0.96064	70.732	2
programs	%	0.8	9.8		22.8	21.1	0.0000	0.90001	10.102	-
Regulations, codes,	F	4	15	58	25	21				_
standards and certification	%	3.3	12.2	47.2	20.3	17.1	3.3577	1.00922	67.154	5
Financial support:							3.5984	0.79403	71.968	1
Demand continuity and	F	5	13	56	21	28	3.439	1.07997	68.78	5
stability	%	4.1	10.6	45.5	17.1	22.8	3.439	1.07997	00.70	5
Affordable loans	F	1	21	39	39	23	3.5041	1.0112	70.082	4
	%	0.8	17.1	31.7	31.7	18.7	5.50+1	1.0112	10.002	т
Tax exemption and levy	F	5	14	46	27	31	3.5285	1.11123	70.57	3
reduction	%	4.1	11.4		22	25.2	5.5205	1.11120	10.51	5
Business and	F	2	5	53	39	24	3.6341	0.89871	72.682	2
marketing	%	1.6	4.1	43.1	31.7	19.5	0.0011	0.09071	12.002	4
Non-delayed payment	F	3	5	41	28	46	3 8862	1.04178	77 794	1
	%	2.4	4.1	33.3	22.8	37.4	5.0002	1.0+170	11.124	
Quality assurance:							3.4016	0.8394	68.032	5
Product, process and	F	2	14	64	22	21	3.374	0.95298	67.48	4
people certification	%	1.6		52	17.9		0.071	0.90290	01110	
Design, manufacture &	F	4	12	51	20	36				
construction	%	3.3	9.8	41.5	16.3	29.3	3.5854	1.10829	71.708	1
integration	F	3	15	54	30	0.1				
Design and processes standardization	г %	2.4	12.2			21 17.1	3.4146	0.99116	68.292	2
Causal analysis and	F	2.4 5	12.2	43.9 52	37	17.1 17				
technical solutions	г %	4.1	9.8		30.1	13.8	3.3984	0.9813	67.968	3
Environmentally	70 F	5	9.8	60	26	15.8				
friendly life cycle							3 2358	0.97578	64 716	5
engineering	%	4.1	13.8	48.8	21.1	12.2	0.2000	0.91010	01.710	Ū
Productivity										_
improvement:							3.5024	0.86966	70.048	2
	F	9	4	49	26	35	0.0010	1 1 5 0 4 0	70.000	0
Mechanization	%	7.3	3.3	39.8	21.1	28.5	3.6016	1.15048	72.032	2
Tracining	F	0	15	50	23	35		1 00644	72.682	1
Training	%	0	12.2	40.7	18.7	28.5	3.6341	1.02644	12.082	1
Controlled environment	F	2	12	60	28	21	3.439	0.94215	68.78	3
Controlled environment	%	1.6	9.8	48.8	22.8	17.1	3.439	0.94213	00.70	5
Health and safety	F	1	19	59	23	21	3.3577	0.96776	67 154	5
measures	%	0.8	15.4		18.7	17.1	5.5577	0.90110	07.104	5
Information and	F	5	7	58	30	23				
communication	%	4.1	5.7	47 2	24.4	187	3.4797	0.99465	69.594	4
technology										
Management							3.4894	0.8945	69.788	3
enhancement:	_		10	50	00	0.1				
Change strategy	F	8	12	50	29	24	3.3984	1.10691	67.968	4
	%	6.5	9.8		23.6					
Extensive planning and	F	2	15	56	24	26	3.4634	1.01054	69.268	3
control	% E	1.6	12.2		19.5					
Organization and	F	7	9	51	23	33	3.5366	1.13291	70.732	2
leadership	% E	5.7	7.3	41.5		26.8				
Collaboration and	F 0/	0	13 10.6	48 39	28 22.8	34 27.6	3.6748	0.99586	73.496	1
coordination	%	U	10.6	39	22.8	21.0				

Table 6:	Ranking	of the	proposed	actions
----------	---------	--------	----------	---------

Transportation,	F	4	10	63	28	18				
logistics & supply chain management.	%	3.3	8.1	51.2	22.8	14.6	3.374	0.94434	67.48	5

Reliability and Validity of Results

The results of Cronbach's alpha test are shown in Table (7) in which it can be noticed that the internal consistency of factors as a whole is (98.5%) which means high degree of consistency.

Table 7: Reliability test results of the respondents evaluation of factors

Sections	Number of factors	Cronbach's Alpha
Lean Construction Benefits	6	0.889
Exogenous Obstacles	12	0.923
Endogenous Obstacles	11	0.923
Readiness on national scale	9	0.934
Readiness on company scale	11	0.945
Knowledge and skills leverage	5	0.908
Financial support	5	0.828
Quality assurance	5	0.893
Productivity improvement	5	0.907
Management enhancement	5	0.912
All	74	0.985

Furthermore, one-way variance analysis was conducted between and within groups of the questionnaire results, to define any significant variances amongst the views of respondents which were classified according to their general information. The mean values, F statistics, and P-values were measured. A sample of the ANOVA tests results is shown in Table (8).

.....

. .

Table 8: ANOVA test for	respondents	organiz	zation field	l of practic	ce
	0		34		

		Sum of Squares	df	Mean Square	F	Sig.
Lean Construction Benefits	Between	3.581	7	.512	.763	.61
	Groups					9
	Within Groups	77.105	115	.670		
Denents	Total	80.686	122			
	Between	1.452	7	.207	.341	.93
Exogenous	Groups					3
Obstacles	Within Groups	69.897	115	.608		
	Total	71.349	122			
	Between	2.514	7	.359	.642	.72
Endogenous	Groups					0
Obstacles	Within Groups	64.345	115	.560		
	Total	66.859	122			
	Between	4.849	7	.693	1.000	.43
Readiness on	Groups					5
national scale	Within Groups	79.633	115	.692		
	Total	84.482	122			
Readiness on	Between	3.610	7	.516	.774	.61
	Groups					0
company scale	Within Groups	76.618	115	.666		
scale	Total	80.228	122			
Knowledge and skills leverage	Between	4.771	7	.682	.878	.52
	Groups					6
	Within Groups	89.272	115	.776		
	Total	94.043	122			

MINAR International Journal of Applied Sciences and Technology

	Between	4.363	7	.623	.988	.44
Financial	Groups					4
support	Within Groups	72.557	115	.631		
	Total	76.920	122			
	Between	4.919	7	.703	.997	.43
Quality	Groups					7
assurance	Within Groups	81.041	115	.705		
	Total	85.960	122			
	Between	4.320	7	.617	.807	.58
Productivity	Groups					3
improvement	Within Groups	87.949	115	.765		
	Total	92.269	122			
	Between	4.091	7	.584	.719	.65
Management	Groups					6
enhancement	Within Groups	93.525	115	.813		
	Total	97.616	122			

Moreover, normality test was carried out using Kolmogorov-Smirnov and Shapiro-Wilk measures of normality. The results are shown in Table (9).

	Kolmogorov-Smirnov*			Shapiro-Wilk		
Questionnaire Sections	Statisti c	df	Sig.	Statisti c	df	Sig.
Lean Construction Benefits	.012	123	.071	.069	123	.056
Exogenous Obstacles	.012	123	.069	.081	123	.076
Endogenous Obstacles	.030	123	.054	.076	123	.030
Readiness on national scale	.029	123	.017	.074	123	.018
Readiness on company scale	.035	123	.140	.072	123	.011
Knowledge and skills leverage	.032	123	.130	.072	123	.012
Financial support	.008	123	.071	.072	123	.010
Quality assurance	.031	123	.120	.069	123	.006
Productivity improvement	.011	123	.101	.065	123	.003
Management enhancement	.013	123	.081	.060	123	.001
Type of projects suitable for LC	.019	123	.090	.077	123	.031
* Lilliefors Significance Correction.						

 Table 9: Normality tests results

The Interviews Results:

The interviews were conducted with (12) out of (123) questionnaire respondents and found to be consistant and eough. They included (3) clients, (3) consultants, (3) contractors, (2) suppliers and (1) manufacturer. There were (8) from the public sector and (4) from the privet sector, (3) holding PhD, (4) MSc and (5) BSc, (10) civil and (2) EMP engineers having (10-25) years of experience. There jobs covered top, middle, site and supportive management. The interviews clarified the sources of the few different opinions gained through the questionnaire to be due to: lack of proper understanding of lean construction, imperfect governmental regulations, contractors-suppliers relations, desperateness, lack of knowledge of modern construction technologies, lack of knowledge in modern ICT applications in construction projects, and lack of knowledge in sustainability aspects.

Discussion:

Concerning the benefits, it can be noticed that the respondents allocated almost the same importance for all potential benefits. This can be attributed to that the Iraqi construction industry is in need of all potential benefits that lean construction can provide. Value

maximization as a major objective of lean construction stands for ranking the potential benefit of 'better quality assurance with greater reliability' at first. Using standardization, prefabrication and modern construction techniques in lean construction is another reason for that. Time and cost saving and west mitigation are obvious basic drivers of lean construction. Productivity is also expected to be higher because communicating, collaborating, and a safe and effective work environment are all emphasized in lean construction. Lean construction lowers downtime by removing inefficiencies in the process of obtaining supplies, equipment, and information. Furthermore, lean construction is expected to reduce risks and enhance safety because of better monitoring and control of activities.

Among the exogenous obstacles, it can be noticed that the 'lack of engineers expertise and workers skills' had the highest influence followed by 'lack of awareness and knowledge'. This ranking looks realistic because the adoption of any new technology or method requires, first of all, appropriate experience and skills supported by adequate knowledge and awareness. On the other hand, corruption, bureaucracy, inflation and prices fluctuation are out of the construction parties' control.

Among the endogenous obstacles, it can be noticed that 'poor team work culture' had the highest influence followed by 'multilayer subcontracting'. This ranking also looks realistic because teamwork by all parties is the backbone of lean construction and the fact of multilayer subcontracting makes it more essential. Feedback and other factors related to it, such as waste identification and meeting deadlines, seem to have the same importance. Factors related to construction techniques like prefabrication and job changes seem also to have the same effect. In general, all endogenous factors seem to have very close effects.

Among the readiness success factors on national scale, it can be noticed that 'expertise and skills' were confirmed to have the highest influence followed by 'information and communication technology'. It can be clearly noticed that the ranking of readiness success factors on national scale conform to the ranking of obstacles to be treated.

Among the readiness success factors on institutional scale, it can be noticed that the 'integration of design, manufacture and construction activities' had the highest influence followed by 'constructability and life-cycle engineering'. More emphasis was made to engineering-related factors (e.g. design, constructability and equipment) than management-related factors (e.g. business, planning, organization ...) and logistics-related factors (e.g. storage, transportation and procurement).

Because all actions need to be financed, it can be noticed that more emphasis was made to financial actions like timely payment, marketing, tax reduction, affording loans and demand stability. All other factors received almost the same level of attention. This result necessitated supporting the questionnaire with direct interviews to dig deeply.

Concerning productivity enhancement actions, 'training' and 'mechanization' received higher attention than work environment, communication and safety, a matter that emphasis the importance of skills and technology as stressed earlier in the readiness success factors.

Regarding management actions, 'collaboration' received higher attention than organization, planning, strategy and transportation, this conform to the need of team-work emphasized earlier in the readiness success factors.

The knowledge and skills leverage actions including; development programs for each party, education, training and codes, showed some contradictions. This is attributed to that each party blames the other parties. This result also necessitated supporting the questionnaire with direct interviews to dig deeply.

Finally quality assurance actions received the lowest ranking including; integration, standardization, causal analysis, certification and life-cycle engineering. This might be due to the need to satisfy first the other aspects of finance, productivity, management and knowledge in order to satisfy quality assurance.

In all ANOVA tests results, it was noticed that the P-value (Sig.) is higher than (5%) for all factors in all cases except very few ones, which means there are no differences between answers in the vast majority of the results. The reason of this limited variation is due to the conflict of interest between the construction industry stakeholders (including different construction project parties). Each evaluated the factors based on his own point of interest.

Concerning the normality test, it can be noticed that the significance value is higher than (5%) in most of the cases which means that all results are normally distributed except in one case in Kolmogorov-Smirnov test and few cases in Shapiro-Wilk test. This is also due to the conflict of interest between the parties.

Conclusions:

1. Performing precise planning and design is crucial to implement lean construction, for it needs much more scrutinizing of all activities than other approaches. As much as planning and design are precise, the project success opportunities are higher in meeting time, cost and quality targets. For instance, how simple, clear, complete, practical, flexible, economic and eco-friendly is the design, bill of quantities, cost estimating, time scheduling, cash-flow forecasting, resources allocation and feasibility study. Modern techniques like building information modeling (BIM) can be of great aid in this sense. Therefore, enough care should be taken in assigning the consultancy and design team.

2. The procurement phase in lean construction is much more important than in traditional construction because of the higher number of deals need to be timely accomplished. When there are some mistakes in any deal, all other related deals will be affected. Therefore, enough time and care should be paid to the procurement process in order to minimize the risk. Care should also be taken in deciding on the type of contract and terms of payment among different procurement methods with different roles of the main parties as well as different payment strategies.

3. The execution stage of any construction project represents the real challenge of lean construction implementation. Therefore, well-trained staffs with enough knowledge and skills need to be provided. Standardization, off-site manufacturing, prefabrication, modern technology, team spirit, and waste prevention of all kinds are vital. An effective monitoring and follow-up technique is required. The Last Scheme System, Last Planner, and Lean Project Delivery System are advisable work management techniques for program coordination, product delivery, continuous monitoring and plans updating.

4. The industry stakeholders should provide enough administrative and financial support to assure the project success in meeting specified time, cost and quality. This might include ensuring; financial liquidity, qualified staff, integration of design, manufacturing and construction, quality assurance through institutional and personal certification, simplifying contract conditions and bidding procedures, timely delivery of all needed resources, prompt response to resolve work issues and active coordination with other parties.

5. The government has a crucial role in adopting new strategies for the constructing industry. It is responsible for relevant legislations and infrastructure management. It has the power and tools to reorganize the market by adopting encouraging policies for tax exemption, banking facilities, bonds and loans, and stable prices and rates of exchange, ensuring the continuity of supply and demand, human resources development and technology transfer.

6. Vocational centers, manufacturers, contractors, professional organizations and labour unions should provide for organizing continual training courses on modern methods and techniques. Academic institutions might have a role in education and research too. Education and training should include courses and seminars for consultants, constructors and technicians, to enhance the culture of lean construction, technology transfer, design and manufacturing standardization, causal analysis, sustainability and life cycle analysis. 7. It is obvious that modern technology facilitates construction works; meanwhile, the challenge is how to transfer modern technology and adopt it locally. Using contemporary materials, equipment and techniques in lean construction, especially prefabrication, can provide for better quality and productivity, less health and safety hazards, more sustainable and eco-friendly products using renewable energy, and less energy consumption. In addition of using modern hardware or software for information and communication technology.

References

1. Abdullah, S., Abdul-Razak, A., Abubakar, A.-H. and Mohammad, I. S. (2009). Towards Producing Best Practice in the Malaysian Construction Industry: The Barriers in Implementing the Lean Construction Approach. International Conference on Construction Industry 2 (ICCI2). Padang, Indonesia.

2. Akinradewo, O., Oke, A. E., Aigbavboa C. and Ndalamba, M. (2018). Benefits of Adopting Lean Construction Technique in the South African Construction Industry. Proceedings of the International Conference on Industrial Engineering and Operations Management. Pretoria. Johannesburg, South Africa, October 29 - November 1, 2018.

3. Al Balkhy, W., Sweis, R. and Lafhaj, Z. (2021). Barriers to Adopting Lean Construction in the Construction Industry - The Case of Jordan. Buildings, Vol. 11, 222. pp. 1-17.

4. Albanna, R. M. (2019). Developing a tool to assess and enhance the workers' understanding of lean concepts in construction. Phd Dissertation. American University of Beirut, Lebanon.

5. Alinaitwe, H. M. (2009). Prioritizing Lean Construction Barriers in Uganda's Construction Industry. Journal of Construction in Developing Countries, 14(1). pp 15-30.

6. Amunzu, I. C. (2020). A Qualitative Case Study of Construction Managers' Understanding of Lean Thinking. PhD Dissertation. Grand Canyon University. Phoenix, Arizona, USA.

7. Ansah, R. H., Sorooshian, S., Mustafa, S. B., and Duvvuru, G. (2016). Lean Construction Tools. In Proceedings of the International Conference on Industrial Engineering and Operations Management. Detroit, Michigan, USA.

8. Aslam, M., Gao, Z. and Smith G. (2020). Exploring Factors for Implementing Lean Construction for Rapid Initial Successes in Construction. Journal of Cleaner Production. 277(3). 123295.

9. Ballard, G. and Tommelein, I. (2016). Current Process Benchmark for the Last Planner System. Lean Construction Journal. 57-89.

10. Blokdyk, G. (2019). Lean Production: A Complete Guide - 2019 Edition. 5STARCooks.

11. Dede G. (2018). Lean and BIM Based Waste Management. Masters Thesis. Mimar Sinan Fine Arts University. Turkey.

12. Demirkesen, S. (2021). From Lean Manufacturing to Lean Construction: How Principles, Tools, and Techniques Evolved. Open Access Peer-Reviewed Chapter. From the Edited Volume Lean Manufacturing. Chapter Metrics Overview. DOI: 10.5772/İntechopen.96191.

13. Demirkesen, S. and Bayhan, H. G. (2020). A Lean Implementation Success Model for the Construction Industry. Engineering Management Journal. 32(3). PP. 219-239.

14. Enshassi, M. A., Mohamed, S., Mustafa, Z. A. and Mayer, P. E. (2007). Factors Affecting Labor Productivity in Building Project in Gaza Strip, Journal of Civil Engineering and Management, Vol. 13, No. 4, Pp. 245-254.

15. Enshassi, A., Saleh, N. and Mohamed, S. (2019). Application Level of Lean Construction Techniques in Reducing Accidents in Construction Projects. Journal of Financial Management of Property and Construction.

16. Forbes, L. H. and Ahmed, S. M. (2020). Modern Construction: Lean Project Delivery and Integrated Practices. 2nd Edition. Routledge. Taylor & Francis.

17. Gao, S. and Low, S. P. (2014). The Last Planner System in China's Construction Industry - A SWOT Analysis on Implementation. International Journal of Project Management, 32(7), 1260-1272.

18. Gunduz, M. and AbuHassan, M. H. A. (2017). Mapping the Industrial Perception of Delay Data through Importance Rating. Arabian Journal for Science and Engineering, Vol. 42, Issue 9, pp. 3799-3808.

19. Gupta, S., Ahmadi, M. A. and Kumar, L. (2020). Identification of the Barriers of Lean Construction Implementation in Construction Projects - A Review. International Research Journal of Engineering and Technology (IRJET). Vol. 8, Issue 3.

20. Hasan, M. F. (2015). Developing a Prediction Model for Public School Building Projects Completion Time at Contract Assignment Stage. MSc thesis, University of Technology, Building and Construction Engineering Department, Iraq.

21. Jorgensen, B. and Emmitt, S. (2008). Lost in Transition: The Transfer of Lean Manufacturing to Construction. Engineering, Construction and Architectural Management. 15 (4), pp. 383-398.

22. Khah, F., Rybkowski, Z., Pentecost, R., Smith, J. P. and Muir, R. (2019). Development and testing of an Innovative Architectural Programming Simulation as a Precursor to Target Value Design. 27th Annual Conference of the International Group for Lean Construction (IGLC), 3-5 July 2019, Dublin, Ireland.

23. Koohestani, K., Poshdar, M., and Gonzalez, V. A. (2020). Finding the Way to Success in Implementing Lean Construction in an Unfavourable Context. In: Tommelein, I. D. and Daniel, E. (eds.). Proc. 28th Annual Conference of the International Group for Lean Construction (IGLC28), Berkeley, California, USA.

24. Le Gratiet, G. C. (2017). Implementation of Lean Construction Tools on an On-Going Project: A Case Study on a Tower Project. Masters Thesis, Department of Mechanical and Manufacturing Engineering, Aalborg University, Denmark.

25. Modi, D. B. and Thakkar, H. (2014). Lean Thinking: Reduction of Waste, Lead Time, Cost through Lean Manufacturing Tools and Technique. International Journal of Emerging Technology and Advanced Engineering, 4(3), pp. 334-339.

26. Mohammed, S. R. and Jasim, A. J. (2018). Using Agile Construction Management Principles for Reducing Delay in Iraqi Construction Industry. Association of Arab Universities Journal of Engineering Sciences. Vol. 25, No. 5.

27. Mossman, A. (2009). Why isn't the UK construction industry going lean with gusto? Lean construction journal, 5(1): 24-36.

28. Mustonen, I. (2018). Implementation of Lean Construction Tools and Their Contribution to Site Management Process. MSc Thesis. Tampere University of Technology.

29. Olatunji, **J.** (2008). Lean-in-Nigerian Construction: State, Barriers, Strategies and "Gotogemba" Approach, Proceedings 16th Annual Conference of the International Group for Lean Construction. Manchester, UK.

30. Ozdemir, M. (2010). A Probabilistic Schedule Delay Analysis in Construction Projects by using Fuzzy Logic in Corporate with Relative Importance Index (RII) Method. MSc Thesis, University of Middle East Technical, The Graduate School of Natural and Applied Sciences, Turkey.

31. Sarhan, J. G., Xia, B., Fawzia, S. and Karim, A. (2017). Lean Construction Implementation in the Saudi Arabian Construction Industry. Construction Economics and Building, 17:1, 46-69.

32. Singh, S. and Kumar, K. (2020). A Study of Lean Construction and Visual Management Tools through Cluster Analysis. Ain Shams Engineering Journal. Architectural Engineering. Vol. 12. Issue 1. Pp. 1153-1162.

33. Small, E. P., Al-Hamouri, K. and Al-Hamouri, H. (2017). Examination of Opportunities for Integration of Lean Principles in Construction in Dubai. Procedia Engineering, Creative Construction Conference 2017, CCC 2017, 19-22 June 2017, Primosten, Croatia, Vol. 196, p. 616–621.

34. Tommelein, I., and Demirkesen, S. (2018). Mistakeproofing the Design of Construction Processes Using Inventive Problem Solving (TRIZ). University of California, Berkeley. Final Report for CPWR Small Study No. 16-3-PS.

35. Vilasini, N., Neitzert, T. R. and Rotimi, J. O. (2011). Correlation between Construction Procurement Methods and Lean Principles. International Journal of Construction Management, 11(4): 65-78.

36. Watfa, M. and Sawalha, M. (2021). Critical Success Factors for Lean Construction: An Empirical Study in the UAE. Lean Construction Journal. Issue 2021. pp. 01-17.

37. Womack, J. (2013). Gemba Walks. Expanded 2nd Edition. Lean Enterprise Institute.
38. Womack, J. P. and Jones, D. T. (2003). Lean Thinking: Banish Waste and Create Wealth in Your Corporation. Second Edition. New York, NY: Free Press, Simon & Schuster Inc.

39. Yuan, Z. Zhang, Z. Ni, G. Chen, C. Wang, W. and Hong, J. (2020). Cause Analysis of Hindering On-Site Lean Construction for Prefabricated Buildings and Corresponding Organizational Capability Evaluation", Advances in Civil Engineering, Vol. 2020, Article ID 8876102, 16 pages.

40. Yusof, I. H. M. (2018). Development of Lean Design Process for Building Construction Projects. PhD Thesis. Department of Civil Engineering. University of Birmingham. UK.