
MINAR

This article has been scanned by iThenticat No plagiarism detected

International Journal of Applied Sciences and Technology

ISSN: 2717-8234

Article type: Research Article

Received: 05/06/2022 Accepted:15/07/2022 Published: 01/09/2022

MICROSERVICES VS. MONOLITHIC ARCHITECTURES

[THE DIFFERENTIAL STRUCTURE BETWEEN TWO ARCHITECTURES]

Nada Salaheddin ELGHERIANI1

Ministry of Technical and Vocation Education, Libya

Nuredin Ali Salem AHMED 2

Ministry of Technical and Vocation Education, Libya

Abstract:

Software development seems to be on the rise, owing to the growing necessity for businesses

to go online,. There is a push to develop upgraded applications that will help businesses

become more efficient and grow. Therefore, Software companies are always working to find

technical strategies to enable their applications to be more agile and scalable. Today's software

architectures include two trendy architectures for applications developing, monolithic and

microservices, which are both popular and powerful. Microservice architecture brings

practical benefits such as scalability and flexibility, as well as being a cost-effective means of

developing large applications. On the flipside, the monolithic approach is losing favor since it

endangers current software delivery methodologies, As well, microservices and monolithic are

always topical when it comes to applications developing. In this paper, we will discuss the

differences between Microservices and Monolithic Architectures, highlighting their strengths

and weaknesses in each, and minding a comparative depending on selecting a simple travel

application structure, which wins to be chosen as the best choice in the software business

world.

Keywords: Microservices Architecture, Monolithic Architecture, Software Architecture,

Application.

http://dx.doi.org/10.47832/2717-8234.12.47

1 Nada.slhxx@gmail.com

2 Nuredin.ahmed@cctt.edu.ly

Volume 4, Issue 3, September 2022

501

www.minarjournal.com

Introduction:

When it comes to the question of how to structure code, all software needs an

architecture for better understanding, communication, consensus, and negotiation among

the various stakeholders. The security, dependencies, guidance, and implementation of

defined guidelines are all determined by the software architecture, which is the backbone of

the software project. Many companies, like Netflix, Amazon, and eBay, have shifted their

applications and systems to the cloud because the cloud computing paradigm allows them to

scale their computer resources according to their needs. Microservices Architecture is also

regarded as a method for developing software. A software application created using a self-

contained set of components that operate each application process as a service is described

here. A component in a loosely connected architecture is independent of the others, can be

written in different programming languages, use multiple data storages, and only performs

one function. On the other hand, Monolithic architecture is an integrated approach to

software development. All software components are linked and interdependent in this

environment. To run code or compile effectively in such a tightly connected architecture, each

component and its related components must be functional [13][14].

Monolithic Architecture

One of the oldest software architectures is monolithic architecture. The goal of this

design is to construct an application with all of the required components. All components are

interdependent and, in many cases, cannot run or even compile independently. Monolith

programs have a lot of distinct libraries inside of them [15]. Monoliths, on the other side, as

companies grow, the monoliths grow with them, where monolith holds all classes, functions,

and namespaces for the entire application, the benefits of employing a monolithic architecture

include that all logic for handling a request runs in a single process. Certain jobs, such as

testing, become trivial for developers as a result of this. Monolith applications can be divided

into three categories, the one that works across single mono, The relational and non relational

type where developer get the process-oriented database structure, finally the over engineered

tar-ball component as many developers name where the whole code must have been

documented all over.

This paper turns on web application transforming as tacked on using mono architecture

firstly. Therefore, Monolithic applications with only one process are the simplest. Many

components can be combined into a single process in such applications. This is the most

popular sort of monolith system.

There are also monolithic systems that are widely distributed. Distributed monolith

systems may include numerous distributed components that are incompatible with one

another and must be installed together. In most cases, monolithic applications are installed

as a single service, except for distributed applications. Monolith applications are frequently a

single process, therefore monitoring them is straightforward. End-to-end testing of monolith

applications is definitely simple [10]. Monolithic application developers do not have to consider

aspects of securing communication between several services, which is an advantage.

Certainly, cheaper hosting costs for monolithic programs can be significant. Monolithic

applications often perform better than microservices applications. The lack of requirement for

communication with another process or service is the major reason for this. Monolithic

applications have several problems, one of which is their vulnerability. It is common for one

issue to have a huge impact on the overall application, rather than simply a small fraction of

it. Monolithic applications are also technologically driven. The same technological stack must

be used to construct a complete application. It can lead to trouble when updating a software's

code to a newer framework version. Another challenge with monolithic applications is that

they can be difficult to interface with other software [11][13].

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

502

www.minarjournal.com

The development team is bound to commit to a single technology in monolithic

architecture, which has its own set of limitations. For example, if the application's framework

becomes obsolete over time, shifting to a newer, better framework can be difficult. It's possible

that the development team will have to rewrite the entire application in a new language and

on a different framework, which is both risky and time-consuming.

Monolithic features a massive codebase that is made up of interconnected components.

Because modifying a single component requires the entire application to be redeployed, such

an application structure makes frequent deployments difficult [13]. This not only causes

problems with background processes, but also affects the operation of associated services.

Due to the sheer risk of redeployments, frequent application changes are forbidden, Table 1

presents the strengths and weakness of Monolithic architecture according to its base

structure [4][5][15].

Strengths of Monolithic Architecture Weakness of Monolithic Architecture

Less cross-cutting concerns

Logging, handling, caching, and performance

monitoring are all aspects that affect the entire

application. This section of functionality only

affects one application in a monolithic application.

Understanding
When a monolithic application grows in size, it

becomes complicated to understand. Furthermore,

managing a complicated coding structure within a

single application is difficult.

Easier debugging and testing

Debugging and testing monolithic applications is

significantly easier. Whereas monolithic software

is one indivisible item.

Making changes

It is harder to implement changes in such a large

and complex application with highly tight

coupling. Any code change affects the whole

system so it has to be thoroughly coordinated.

This makes the overall development process

much longer.

Simple to deploy

There is no need to deal with several deployments

when it comes to monolithic applications, just one

file or directory.

Scalability
Only the whole application.

Simple to develop

Any technical team with proper abilities and

knowledge can design a monolithic application as

long as the monolithic approach is a typical way of

building applications.

New technology barriers
Applying new technology to a monolithic

application is exceedingly difficult because the

entire application must be rebuilt.

Strengths and weakness points in Mono - [Table 1]

Microservices architecture

Business logic has split down into minimal, single-purpose self-contained services in a

microservice architecture. Each architectural service is in charge of achieving a certain

commercial aim. In essence, the microservice architecture resembles a Lego construction that

has been broken down into several components. APIs [Application Programming Interface]

guarantee that the system's components communicate with one another.

The phrase "microservice" has recently received a lot of traction. Starting with Netflix,

which has been adopted by some companies, including Amazon, Spotify, and Sound Cloud.

The microservice architectural style is a method of developing distributed systems that are

developed to address the shortcomings of monolithic architecture. It is an extension of classic

service-oriented architecture (SOA), highlighting the division of a system into small, compact,

and loosely connected services, each executing on its own process space and developed to

perform a highly integrated business function. The autonomy of services is one of the primary

characteristics of microservices. While microservices are independent of one another and

should not share the same data source, they can also be deployed independently. Each service

is in charge of a little amount of logic that is centered on the same business domain. The

question is whether the microservice should be modest or large. It can defined as an

http://www.minarjournal.com/

Volume 4, Issue 3, September 2022

503

www.minarjournal.com

application that can be rewritten in two weeks. Instead of having one large-scale, service that

handles all business logic, a microservice architecture is a distributed system where all its

modules are microservices, each dedicated to a single business capability. This fosters

separation of concerns and allows each service to be independently replaceable, upgradeable,

and redeploy able at any time [12][13].

Characterized control and data management are also provided by independence. The

database per service pattern refers to each service having its own, independent storage system

that can be built with the most appropriate technology stack for the work at hand.

Microservice architecture is flexible and creates opportunities for companies to respond

faster to inevitable change because of its evolutionary design. Microservice architecture can

increase agility, developer productivity, resilience, scalability, reliability, maintainability,

separation of concerns, and ease of deployment. However, all of this comes with its own set

of challenges. Services communicate over the network as microservices are built

independently. This requires service discovery, enhanced security management, improved

communication, and load balancing. Microservices architecture allows developers to build

applications utilizing a variety of technologies (languages, frameworks, and operating

systems). With a single technological stack, this eliminates dependency and long-term

commitment. A new, better technology stack can be implemented whenever a new service is

established or an old service is updated [11][13].

This also reduces the development team's dependence on a single resource for creating

or updating services. Each component of an application is operated and scaled separately in

microservices. This means that if one of the application's services is changed, the other

services will remain unaffected. Furthermore, microservices do not exchange code or

implementation with other microservices. Microservices architecture makes continuous

development and deployment of large, complicated applications simple [13]. Using these little

standalone, applications that provide specific functionality have both strengths and Weakness

points. Table 2 - presents the strengths and weakness of Microservices architecture [4][5][15].

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

504

www.minarjournal.com

Strengths of Microservices Architecture Weakness of Microservices Architecture

Independent components

Starting with, all of the services can be installed

and upgraded independently, allowing for

greater flexibility. Moreover, a problem in a

single microservice affects only that service

and does not affect the entire application. In

addition, adding new features to a microservice

application is significantly easier than adding

them to a monolithic program.

Extra complexity
Whereas a microservices architecture is a cloud-

based system, the connections between all of the

modules and databases must be established and set

up. Furthermore, if an application has independent

services, each one must be deployed separately.

Easier understanding

Microservice applications are better to

understand and manage since it is broken

down into smaller and simpler components.

System distribution

Since a microservices architecture is a

complicated system with many modules and

databases, all of the connections must be

carefully managed.

Better scalability

The microservices architecture also has the

advantage of allowing each component to scale

independently. As a result, the entire process is

less expensive and time-consuming than with

monoliths, where the entire application must

be scaled even if it is not required.

Cross-cutting concerns
To deal with many cross-cutting concerns when

developing a microservices application.

Externalized configuration, logging, metrics,

health checks, and other features are among them.

The higher level of agility

Any flaw in a microservices application only

affects one service, not the entire solution. As a

result, all of the modifications and

experimentation are carried out with fewer

risks and errors.

Testing
Testing a microservices-based solution is

significantly more difficult due to a large number

of independently deployable components.

Strengths and weakness points in Micro - [Table2]

Paper Questions

How do monolithic work [3][4]?

The monolithic architecture is made of various components that work with each other to

define it. These include the following:

Business layer; this layer specifies what the application must do to meet with business logic.

Database layer; It serves as a repository for all required data objects.

Presentation layer; this layer improves the communication between the user interface and

the browser.

More specifically, the application's requests and responses.

Persistence layer; it takes care of object-relational mapping and other tasks.

In a monolithic architecture, all the layers act in isolation from each other. It implies

that any change in any layer requires an update on the remaining layers to be executable.

How do microservices work [3]?

Microservices architecture divides functions into smaller parts known as services. These

services are set up to carry out specific activities or operations. Moreover, the database

structure is such that depending on the type of data needed to handle specified tasks, each

microservice has its own database or may share one. The microservices communicate with

one another using an API. An application-programming interface [API] is a collection of

instructions that allows users to call the application and receive the necessary data. The API

retrieves data from numerous microservices in order for the end client's mobile or desktop

applications to conduct the appropriate requests.

http://www.minarjournal.com/

Volume 4, Issue 3, September 2022

505

www.minarjournal.com

Why microservices [4]?

Each microservice can be deployed independently There is no need to re-deploy the

entire application with each update, and for complicated applications, continuous deployment

is conceivable. The team dedicated to that service in terms of development can build

Microservice independently. Decomposing an application makes it considerably easier to

design applications that are more comprehensible and maintainable. Adapting to new

technologies is simple since developers are free to choose the technologies that make sense

for their service rather than being restricted to the choices made at the start of the project.

Which software architecture to choose [7]?

To answer this question, business requirements such as project budget, estimates, and

revenue must first be stated. Small enterprises and startups will thrive from the monolithic

approach since that allows for easy development and deployment. But at the other hand,

microservices will aid in the implementation of changes and upgrades to the application

structure.

By considering the following scenarios, for choosing to choose a monolithic architecture

firstly, a project must be informed in many different ways, Like:

 Plan to create a basic application that will not require future upgrades. The project's

complexity will be a disadvantage in this situation due to the microservices architecture's

complexity.

 The product must be deployed as soon as possible.

 Will not have a staff of specialists who can partition the system into different functionalities

and assign roles.

Reasons for making the choice to choose a microservices architecture secondly:

 Set to deploy a large-scale, sophisticated application. The implementation of new

technologically advanced stacks will be the ideal answer if new functionalities and upgrades

to the application that required in the future. Microservices strategy will be particularly useful

for gaining a competitive advantage in this regard.

 If there were specialists who are strongly tied to microservices and have extensive knowledge

in this industry, this would be ideal for microservices architecture strategies.

Not all architecture is created equal. Likewise, although not all applications are created

similarly. Microservices are better suited to sophisticated and dynamic applications, on the

other hand, will be a monumental task without sufficient competence in these technologies.

In addition, many people think differently in architecture. Some people believe that the

application should build as a monolith initially for being easier at first then switched to

microservices when growing. However, the main point in software architecture is that there

would be no need to start with monoliths if the goal was to construct a microservices

application. Choosing the best architecture always depends on the software’s structure and

the purpose created for the service.

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

506

www.minarjournal.com

What are the differences in software development methodologies among microservices

and monolithic architecture [4][15]?

Monolithic Architecture Microservices Architecture

Tightly connected service components. Loosely coupled service components.

Usually takes longer to develop. Quick to develop and takes little time.

All of the components are interdependent, and if one

goes down, the entire application falls.

Any service that goes down can be addressed

independently without affecting the application.

Requires less resource distribution because the services

are It follows a centralized approach dependent.
Each team can work independently.

Continuous and rapid application delivery is tough

for the application development process must be

initiated from scratch.

The entire team contributes to numerous advancements,

allowing for speedier development and ongoing

delivery.

Less scalable Highly scalable

Difficult to communicate amongst teams. The team's communication is clear and effective.

Project-based approach. Product-based approach.

One technology can be utilized at a time, and the

application cannot be upgraded with newer

technologies.

Various technologies can be applied to different service

components.

Differential differences for Micro and Mono Architectures [Table 3]

Software Industry Issues and Priorities

All software companies aspire to be more agile and faster, to deliver products more

quickly, to have shorter release cycles, and to help their customers achieve Digital

Transformation. Hundreds of legacy apps are sitting in on premise data centers for the

majority of mid-to-large businesses, and they want to shift them to the cloud. They commonly

transfer their applications to the cloud in their current state, but this is ineffective. Cloud

applications must build in such a special manner.

This paper will show how shifting an application structure from monolithic to

microservices can change the whole business strategy, Where Microservices provide lots of

benefits over monolithic systems, although they are a relatively new idea. Numerous

monolithic applications have previously been developed. They are not really cloud natives.

Methodology

To compare the structure of two different architectures on travel applications. Initially

identify the first application, which is built using monolithic and prove the challenges of

shifting to microservices, then understand how microservice application can provide backend

capabilities by exposing APIs, where the gateway displayed in the frontend of the entire system

that includes all of the APIs of every microservice application in the system.

Microservices Platform

For this type of application, a microservices-based system would be suitable. A

microservice would handle each phase of the data preparation process: data collecting,

filtering, normalization, enrichment, aggregation, and reporting. The microservices approach

naturally provides a trackable lineage, making it very easy to trace back, which microservices

may need to be modified if data issues happen. In the case of microservices architecture works

through component isolation. If one microservice fails in this loosely connected architecture,

it is easy to spot and assures that other sections of the program are unaffected. The proactive

avoidance of platform inefficiencies and failure through microservice autonomy is becoming

http://www.minarjournal.com/

Volume 4, Issue 3, September 2022

507

www.minarjournal.com

increasingly relevant for industries and enterprises that frequently deal with a high volume of

requests or the interchange of sensitive data across multiple applications. Furthermore, the

separation of distinct platform components makes monitoring easier, technical staff can also

tap into deeper functionality from a service-layer perspective, and empower continuous

development, integration, and refinement of their important processes in a way that can

actually transform and move ahead, due to the power of microservices architecture [12].

Travel application architecture Scenario

Software Company has implemented a travel platform, this application has implemented

using a monolithic backend system. While it was difficult to integrate hundreds of service

providers because its technology differs greatly and some have minimal technical expertise.

The replacing architecture base is needed eventually [9].

Monolithic architecture in use

Serving so many routes with so many different transport modes, plethora of offers,

promotions, rules, dynamic timetables, moving grounds, and a seemingly unlimited amount

of journey segment permutations is no small engineering achievement. The magic that

transpired between pressing the search button on the landing page and showing a list of the

most intriguing connections was managed by a single monolithic application at

the beginning, for when the volume of the traffic, data, codebase, and number of external

integrations was significantly was much smaller. However, as everything continued to rapidly

increase in numerous dimensions, it became increasingly difficult to build and operate. The

whole stiff working probably knows what happened next, by keeping up with current software

architecture and technical advances. Everything concerning provider integration was built

as a monolithic service because the design was simple enough.

Integrating providers is just one part of the puzzle when it comes to creating a search

result. Originally, all of the code was contained within a single monolithic application.

Conflicts arise frequently among teams working on the same codebase. Changes in one place

had unintended consequences in other others. It was difficult and time-consuming to

coordinate releases amongst teams. A large number of changes released at the same time

raised the chance of failure. Difficult to trace the particular commit that caused a failure if

one occurred, and it may not always be possible to reverse it because there may have been a

lot of other changes stacked on top of it [15][6].

Application Architecture

Travel: Airfares displayed and airline tickets purchased.

Hotel: Hotel room listings and reservation.

Purchase: Providing users with the ability to make payments.

Authentication: Identification service for signups, logins, and logouts, among other things.

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

508

www.minarjournal.com

[Figure1] explain how mono works as one block.

Thinking Microservices

Application growing study: By choosing to use feature toggles, one may easily enable or

disable new code execution pathways and functionality based on database entries. This would

be nevertheless, frequently difficult and blunder, as there was sometimes a need to branch

the logic in multiple locations. Away from the increased development complexity, the

application grew increasingly difficult to start and demanded increasing amounts of

resources. As a result, increasing the number of replicas in production proved challenging

and inefficient in terms of CPU and memory usage [6] [Figure2].

First, a single architecture that controls the layout of basic search results, bookings, and

travel modes, among other things. The model comprises a search result structure that

incorporates travel legs, segments, stations, trains, stops, and offers, among other things.

Second, a bootstrap application that serves as a runtime framework around the code for a

specific provider search integration and displays all of the required API endpoints as specified

in the Search Core contract.

Finally, when building a new integration, a code-generation tool based on Rhythm templates

is used to generate all of the glue code.

[Microservices Architecture] [Figure2]

Layout service in Microservices

Since microservices are lightweight, self-contained, and Cloud hosting that are simple

to comprehend, deploy, and scale. While constructing this application as a collection of small

services, each executing in its own process and communicating using lightweight mechanisms

[HTTP resource, and API].

Description: Microservices supports dividing a monolithic application into smaller bits

or components. In other words, it separates each module from the monolithic architecture as

a standalone monolithic architecture. It takes a modular approach to huge application

development. The microservices’ individual services or components are loosely coupled with

one another. Additionally, they function as a self-contained unit. By comparing the monolithic

[Monolithic Architecture] [Figure 1]

http://www.minarjournal.com/

Volume 4, Issue 3, September 2022

509

www.minarjournal.com

architecture to microservices, standing on three basic steps (Development, Troubleshooting,

and Deployment) greatly enhance the company's experience when developing an application.

Development

The monolithic design will most likely use a single codebase or repository. This implies

that all developers contribute separately to a single codebase. They are pulling the most recent

code from a remote repository, as well as pushing and merging their own. This creates a lot

of code clashes as a development workflow. As a result, resolving these issues may cause the

workflow to slow down. As going in-group of developers is working on the payment mechanism

of application. Another team could be working on the authentication module at the same time.

However, they are both bringing in new code and pushing it to the same repository. This is

not necessary because their activities are unrelated and could generate confusion. The

payment team no longer has to be concerned about the authentication team's most recent

codebase changes. Similarly, the authentication team can push their code without involving

the payment team. Definitely a cleaner, nicer, and more enjoyable development process.

Troubleshooting

The architecture in monoliths is tightly coupled frequently leading to difficult-to-trace

faults and defects. This is due to the fact that modifications in one component or module can

frequently result in unintended changes in other connected modules. As working on a flaw in

the authentication module.

However, as it is so close to the payments module in the same codebase, technical

staff accidentally introduced an unwanted behavior in the payments module. In this situation,

the monolith suffers from the drawback of being more vulnerable to application bugs. In

addition, microservices are more flexible in this situation. Because of payment module is

lightly connected with the authentication module, no matter how many flaws are created in

the authentication module, the payment module will stay intact. Since the authentication and

payment modules are different projects, even inadvertent changes to the authentication

module will not affect the payment module.

Deployment

In monolith, updating the authentication module on the server requires redeploying the

entire application. One of the major drawbacks of monoliths is that a slight change in a

supposedly isolated module can result in the entire application being deployed. Furthermore,

if the factor in the resulting downtime, it could be a difficult condition for company, users,

and entire product. In this situation, the related delay is only visible in the authentication

microservice. All of the other microservices continue to function normally [15][13] [Figure3].

Cost and Complexity

Monolithic Microservices

Full Application Deployment [Figure3] Individual Services Deployment

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

510

www.minarjournal.com

For microservices the more components the architecture has, the more complex it is to

manage and maintain them. As a result, the whole application's cost and complexity

increases, having many services, each hosted separately means having independent

codebases. In addition, each microservice should have its own database, the additional cost

and complexity of hosting databases could be significant. Monolithic is straightforward, not

lavish. In terms of infrastructure, just one server is required for the application and another

for the database [14].

Communication between sectors

To book a flight, the user launches the application. Two application modules are used

in this scenario. The first is the travel one, which displays all available flights, reserves a seat

for user, and generates e-tickets, and so on. Second, payment; without paying, no reservation

can be made.

By mentioning how the travel module communicates with the payment module

in monolithic, first; at the time of payment, invoking the payment module from the travel

module. Furthermore, in monolithic architecture, all modules are in one location. The code

works from any location.

The travel microservice must communicate with payment microservice. Each

microservice need to interact with the others if user wanted to book a complete travel package

like, airline tickets, hotel room. Furthermore, some use cases may require a lot of back-and-

forth across multiple microservices. For example, user may buy a flight and a hotel for

themselves, and then book a hotel for a business visitor. Clearly, monolithic systems have the

ability to be faster than their microservice equivalents.

Results

Users are always looking for services that are faster, more efficient, and more

performant. Monolithic services might be faster than their microservice equivalents.

Interservices communication is where this performance comparison differs. Each

interservices connection with microservices will almost certainly take the form of an API call

[16]. This API call is transformed into code calls or function invocations in monoliths.

Scalability

Using a load balancer and many server nodes to achieve horizontal scaling in monolithic

architecture. Monolithic would be able to scale effectively without a single point of failure. As

a result, if one of the server nodes or the API server fails, the other nodes can step in to help.

However, one disadvantage of scaling monoliths will always be the separation of business logic

[13] [Figure4].

[Horizontal scaling- Monolithic Architecture] [Figure4]

http://www.minarjournal.com/

Volume 4, Issue 3, September 2022

511

www.minarjournal.com

At the business level, the requirement to divide modules or components becomes more

critical. Microservices are incapable of horizontal scaling. Individual microservices can be

scaled as and when needed, allowing for granular scaling [14][6] [Figure5].

Conclusion

According on the comparisons, the software firm must select which factors are crucial.

Monoliths is a good place to start. It is also a good idea to have a small team for monolithic.

When it goes to scale the application from a medium to a somewhat large size, horizontal

scaling in the monolithic is good. As microservices, fits with a large and diverse workforce,

and a diversity of tech stacks, wins this one. As a result, the decision is to bear the cost and

complexity of microservices.

Acknowledgement

While attempting to make the implementation even easier, companies must be aware

that rapid coverage expansion requires a transition to generic deployments and the

development of APIs and tools that allow others to integrate with us rather than the other way

around. Besides from expanding coverage, additional features are being added to the site to

help travelers from the moment they decide to take the journey, through planning, searching,

purchasing tickets, the actual journey, even after it has ended. The more comprehensive and

intelligent the platform develops, the more advanced the technology supporting it becomes.

Microservice architecture solves many problems, but it also brings new ones. It requires a

significant initial investment in infrastructure, which may be difficult to achieve in smaller

enterprises. However, when the number of developers, system size, and traffic increase, the

solution really shines.

Concepts

API “Application Programming Interface” [16][17]

Consider as a set of operations that allow applications to interface with external software

components, operating systems, or microservices in order to access data and interact with

them.

There are two parts to an application programming interfaces:

 Technical standards providing the choices to data interaction across solutions, written in

the form of a request for processing and data delivery protocols.

 Software interfaces written for the standard describing it.

Each API includes and implemented via function calls, which are language statements that

instruct software to do specific activities and services. Function calls are made up of verbs

and nouns:

 Start or end a session.

[Granular scaling- Microservices Architecture]

[Figure5]

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

512

www.minarjournal.com

 Get amenities for a specific type of accommodation.

 Objects can be restored or retrieved from a server.

Application Programming Interface -Gateway [API-Gateway]

In any microservice architecture, an API gateway is essential. It is single, consistent API

access point across one or more internal APIs provided by an API gateway. Rate limiting and

security are usually layered on top of each other. The number of services in a microservice-

based architecture can range from ten to one hundred or more. Regardless of the number or

composition of internal microservices, an API gateway can assist provide a unified entry point

for external users.

http://www.minarjournal.com/

Volume 4, Issue 3, September 2022

513

www.minarjournal.com

References:

[1] Lebedev, A. (2021). monolithic and microservices-based architecture. Retrieved from:

https://morioh.com/p/54271e7358ad?f=5c224490c513a556c9042463&fbclid=IwAR0Uly4Y

TIS0cKeKPCR5I_e8ZcrIRJEwA62AUoAAciOT4vhD8VcHZcetkfU

[2] Dissanayake, B. (Nov 17, 2019). Level up coding. Monolithic vs. Microservices Architecture.

Retrieved from: https://levelup.gitconnected.com/monolithic-vs-microservices-architecture-

b333c8754187

[3] Kharenko, A. (2015). Monolithic vs. Microservices, Monolithic Architecture. Microservices

Practitioner Articles. Retrieved from: https://articles.microservices.com/monolithic-vs-

microservices-architecture-5c4848858f59

[4] Jain, P. (October 28, 2020). Monolithic vs Microservices – Difference, Advantages &

Disadvantages. Retrieved from: https://k21academy.com/docker-kubernetes/monolithic-vs-

microservices/?utm_source=facebook&utm_medium=referral&utm_campaign=kubernetes31

_jan21_cloud_for_beginners&fbclid=IwAR3KFlLGXZt_dVIh6DitflogpS2JubJo0DZswr4ods0G

YakwHBdb6vrshNU#8

[5] Spratshi. (Aug 13, 2021). Monolithic Vs Microservices Architecture. Retrieved from:

https://rollbar.com/blog/monolithic-vs-microservices-architecture/r

[6] Eisele, M. (June 16, 2019). Monolithic Vs Microservices. Retrieved from:

https://programmerfriend.com/monolith-vs-

microservices/?fbclid=IwAR0YO3B8H2Q43YG2INYHIO7AZ5I6yAb2UwavO3O_s0K16_9Rf1cD

bI_Cirk

[7] Kaczmarek, A. (Jan 8, 2021). Monolithic vs Microservices - which architecture to choose?.

Retrieved from: https://softwaremill.com/monolithic-vs-microservices-

architecture/

[8] Matloka, M. (Aug 03, 2020). How to design microservices architecture?. Retrieved from:

https://softwaremill.com/designing-microservices-architecture/

[9] Maddikera, B. (Mar 20, 2021). How to Build Micro Services - Real World - Travel App.

Retrieved from: https://www.linkedin.com/pulse/micro-services-travel-app-bhargav-

maddikera

[10] Vistola, L. (July 23, 2021). The Move Away from Monolithic Application Development.

Retrieved from: https://devops.com/the-move-away-from-monolithic-application-

development/

[11] Sontz, M. (2022). From Monoliths to Microservices – Benefits, and Challenges. RCG

Global Services. Retrieved from: https://rcgglobalservices.com/monoliths-microservices-

benefits-

challenges/?fbclid=IwAR0YO3B8H2Q43YG2INYHIO7AZ5I6yAb2UwavO3O_s0K16_9Rf1cDbI_

Cirk#:~:text=Refactoring%20a%20monolithic%20application%20to,ahead%20and%20plan%

20for%20failure

[12] Garcia, L.M., Aciar, S., Mendoza, R., & Puello, J.J. (2018). Smart Tourism Platform Based

on Microservices Architecture and Recommender Services. Mobile Web and Intelligent

Information Systems, pp.167-180.

[13] Blinowski, G. Ojdowska, A. & Przybylek, A. (Nov 30, 2021). Monolithic vs. Microservices

Architecture: A Performance and scalability Evaluation. IEEE Access.

[14] Na, N., Wang, W., Xu, Y & Luo. W. (2019). A Microservice–Based Big Trajectory Data

Processing Platform for Multimodal Trip Planning. International Conference on Big Data,

Electronics, and Communication Engineering.

[15] Harries, S. (2020).Microservices Vs. Monolithic. Retrieved from:

https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-

monolith.

[16] Johnson, J. (Dec 16, 2020). Microservices Vs APIs: What’s the difference?. Retrieved from:

https://www.bmc.com/blogs/microservice-vs-api/.

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

514

www.minarjournal.com

[17] Longbottom, C. (Jul 29, 2021). Microservices Vs APIs: How they differ and work together.

Retrieved from: https://www.techtarget.com/searchapparchitecture/tip/Microservices-vs-

APIs-How-they-differ-and-work-together.

http://www.minarjournal.com/

