
 MINAR

International Journal of Applied Sciences and Technology

ISSN: 2717-8234

Article type: Research Article

Received: 18/06/2023 Accepted: 12/07/2023 Published: 01/09/2023

MEASURING MAINTAINABILITY INDEX BEFORE AND AFTER CODE REFACTORING

Shahbaa I. KHALEEL1

University of MosuL, Iraq

Ghassan Khaleel AL-KHATOUNI2

University of MosuL, Iraq

Abstract

Measuring the maintainability index of software is crucial to ensure better maintenance and

improve quality. Refactoring code is important in improving software quality and increasing

maintainability. However, understanding the relationship between refactoring code and the

maintainability index is crucial for software developers and maintenance engineers. An

assistive software tool called MMIBAR was developed, which provides a set of metrics for

calculating the maintainability index of the source code before and after refactoring code

that contains cloned programming code. This research contributes to the understanding of

the relationship between refactoring code and the maintainability index, and proposes a

software tool that can help software developers and maintenance engineers improve

software quality and increase maintainability. The research involved the development of the

MMIBAR software tool and the application of its metrics to measure the maintainability

index of the source code before and after refactoring code that contains cloned programming

code. The results of the study demonstrate that refactoring code can significantly improve

software quality and increase maintainability. The MMIBAR software tool provides a useful

set of metrics for measuring the maintainability index of source code, and can be used to

identify areas of code that need further refactoring. The research shows that refactoring

code is crucial in improving software quality and increasing maintainability. The MMIBAR

software tool can help software developers and maintenance engineers identify areas of code

that need further refactoring, and ultimately improve the overall quality of software systems.

Keywords: Maintainability; Maintainability Index; Code Refactoring; Cyclomatic Complexity.

 http://dx.doi.org/10.47832/2717-8234.16.2

1 shahbaaibrkh@uomosul.edu.iq, https://orcid.org/0000-0001-8154-0364

2 chassan.kalel.1984@gmail.com, https://orcid.org/0000-0001-8496-4939

mailto:chassan.kalel.1984@gmail.com

Volume 5, Issue 3, September 2023

19

www.minarjournal.com

Introduction

The ease with which software can be understood, modified, and tested is a significant

factor in enhancing its quality, and this is referred to as maintainability(Macharia &

Kimwele, 2022). The Maintainability Index (MI) is a measure of the maintainability of a

software system, which can be evaluated using different metrics such as Lines of Code

(LOC), Cyclomatic Complexity, and Halstead Volume(M.A.M.Najm, 2014). These metrics will

be discussed in detail. By measuring the MI of a software system before and after code

refactoring, refactoring techniques can be used to enhance the system's maintainability.

This process can be useful in identifying code that may require further refactoring and

improving the overall maintainability of the system. A higher MI score indicates that the

system is more maintainable, while a lower MI score suggests that the system is less

maintainable(Caro et al., 2007). MI is used to identify areas in the system that may require

improvement to increase maintainability and helps developers prioritize refactoring

efforts(Ouni et al., 2016).

 Code cloning, also called duplicate code, refers to parts of code in a software system

that are identical or similar and have the same function. This is seen as an issue in software

development as it can result in higher maintenance costs, lower code quality, and

difficulties in fixing errors. It can have negative effects on maintainability during software

development by increasing code complexity, making it hard to comprehend and change, and

expanding code size. To eliminate cloned code, developers use code refactoring techniques,

which are common methods for extracting and getting rid of duplicated code(Tairas, 2006).

 The research topics are structured and organized in a logical and systematic manner

to ensure a comprehensive and cohesive study. The first section focuses on previous

studies, which provides a background and context for the proposed research. The next

section examines the concept of maintainability, which is an essential factor in software

development. It highlights the significance of maintaining software systems to ensure their

continued functionality and relevance. The subsequent section discusses code

restructuring, which is the process of modifying existing software code to improve its

quality, efficiency, and maintainability. The implementation of the proposed model follows,

where the research presents the details of the software model designed to address the issues

of maintainability and code restructuring. The next section involves a practical study of the

employees' payroll management system, which serves as a case study for the proposed

model. Finally, the research concludes by summarizing the findings, identifying the

limitations of the research, and suggesting areas for future research. The overall structure

and organization of the research topics provide a clear and concise understanding of the

research and its significance .

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

20

www.minarjournal.com

Literature Review

Maintenance is a crucial part of the software development life cycle. While maintaining

a software, the code may undergo several changes, resulting in reduced code quality and the

emergence of issues with cloned or duplicated code. To address these issues, it is essential

to employ code refactoring techniques. The following are some previous works done in this

area.

In 2010, Hegedűs et al examined how to predict quality characteristics, including

maintainability, testability, and error proneness, based on measures that can be quantified

in the source code, such as cohesion, code size, and complexity. They also investigated the

effect of each refactoring approach on the computed metrics. Applying code restructuring is

a reasonable and effective activity to facilitate maintenance and increase the value of

program quality characteristics if refactoring operations are used correctly(Hegedűs et al.,

2010).

In 2011, Dig introduced a new method for applying refactoring techniques to analyze

and transform existing source code. The method suggests changing multiple lines of source

code and eliminating errors to ensure parallel operations that increase program

performance, maintainability, and portability. The research also presents a set of tools that

support many refactoring activities, including increasing scalability and maintaining parallel

operations, making processes harmless, and increasing the productivity of sequential

operations(Dig, 2011).

In 2012, Meananeatra proposed a method for identifying the best sequence of code

refactoring that satisfies several metrics such as maintenance factor, total number of

resolved faults, sequence of refactoring dimensions, and total number of program

components that have been modified. Additionally, the authors estimate that the results

tend to reduce maintenance cost and time and improve program quality. The research

method does not produce all refactoring sequences at once, but it regularly discovers a

graphical representation of the sequences and uses the polishing method to remove the

reverse sequence of refactoring to find the best sequence to be executed(Meananeatra,

2012).

In 2013, Fujiwara and colleagues proposed a technique for assessing refactoring

procedures using version archives. The goal of this approach is to enhance software quality

by improving maintainability. The method is implemented semi-automatically by analyzing

software archives using two algorithms: UMLDiff, which detects differences in UML

diagrams, and SZZ, which identifies bug-fixing changes. The researchers used the Columba

project as a case study and found that refactoring cycles reduce the occurrence of defects

and improve maintainability, as measured by three variables: frequency of refactoring,

frequency of bug fixing, and defect density(Fujiwara et al., 2013).

In 2014, Chaparro et al introduced a technique called Refactoring Impact Prediction

(RIP) to study the impact of refactoring processes on software code quality metrics. With this

http://www.minarjournal.com/

Volume 5, Issue 3, September 2023

21

www.minarjournal.com

technique, developers can assess the opportunities for refactoring in software maintenance

tasks, and also compare the deviation values caused by refactoring processes, especially

when refactoring involves multiple transformations and conflicting metrics evaluation of the

source code(Chaparro et al., 2014).

In 2015, Han et al introduced the term MIS (Maximal Independent Set) which allows

developers to identify multiple refactoring processes that can be executed at the same time.

Each MIS has a set of refactoring paths that calculate a delta table, which represents the

maintenance value for each initial path. In each round of the refactoring process, multiple

operations can be applied to increase the maintenance value through sets of MIS. The

proposed model was implemented in several case studies and the results show that it can

increase the maintenance factor. Additionally, developers can apply multiple refactoring

processes at the same time(Han et al., 2015(.

In 2016, Malhotra and Chug conducted a study on the impact of software

restructuring on maintainability using five proprietary software systems. They evaluated

internal quality attributes using a set of design metrics, while external quality attributes

such as understandability, abstraction, extensibility, modifiability, and reusability were

assessed by experts. The original program versions were compared to the restructured

versions, and changes in quality attributes for maintainability were analyzed. Results

showed a significant improvement in program quality and expected lifespan with software

restructuring and improvement. However, they also found that restructuring could be

tedious and lead to errors if not carefully implemented. Therefore, they recommended

frequent code restructuring to enhance maintainability while balancing engineering and

over-engineering. The study's findings can assist management in identifying opportunities

for restructuring while maintaining an ideal balance between engineering and over-

engineering(Malhotra & Chug, 2016).

Mohan and Greer proposed a new way to automate software maintenance in 2017.

This tool is capable of carrying out 26 different rebuilding processes and has a wide range of

options for evaluating the impact of the rebuilding on the software. It also has six search-

based methods for optimizing software, including both single-objective and multi-objective

approaches. The tool has been fully automated and the researchers have highlighted its

diverse abilities and unique features, while presenting results from a study. The

effectiveness of various metrics has been tested on five different codebases to determine the

best measures for improving software quality(Mohan & Greer, 2017).

In 2019, Mohan et al. present a study on a many-objective genetic algorithm for

automating software refactoring, implemented as the Java tool Multi-Refactor. The tool

incorporates four software quality measures, including code priority, element recency,

refactoring coverage, and software quality metrics. The many-objective algorithm combines

the four measures to improve software quality holistically. The study compares the many-

objective method with a mono-objective approach using only one objective to measure

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

22

www.minarjournal.com

software quality. Several objective permutations were tested on six open-source Java

programs. The many-objective approach provided more effective objective score values on

average and was faster than the mono-objective method. However, the study found that

element recency and priority measures had lower success rates when used in combination

with other objectives in many-objective setups. The authors conclude that the many-

objective approach is suitable for optimizing automated refactoring to improve software

quality, although the addition of other objectives may be less efficient than using a mono-

objective method(Mohan & Greer, 2019)

In 2020, Morales and others conducted an experimental study to investigate the effect

of automated code refactoring on the system's understandability during comprehension

tasks. They conducted a survey of 80 developers, asking them to identify a set of 20

refactoring changes in code that were produced either by a tool or by developers, as well as

to provide a rating of the quality of the refactoring changes. They also asked 30 developers

to perform code comprehension tasks on 10 systems that had been refactored either by an

independent compiler or through automated refactoring tools. They measured the

developers' performance using a NASA agency metric for their efforts, the time they spent on

tasks, and the percentage of accurate responses. despite the current limitations imposed on

technology, the results they found showed that it is reasonable to expect that a refactoring

tool would match the developer's code. In fact, the results showed that for 3/5 of the anti-

patterns studied, developers did not have the ability to identify the origin of the refactoring,

whether it was executed through an automated tool or not. Additionally, they noted that

developers do not prefer manual refactoring processes over automated refactoring

processes(Morales et al., 2020).

In 2021, Draz et al. presents a comprehensive study on the role and effects of code

refactoring in improving software quality. The study highlights positive improvements in the

quality of code concerning internal attributes like complexity, inheritance, coupling, and

cohesion, with the exception of size, after applying refactoring operations(Draz et al., 2021).

In 2022, Fernandes et al. introduces a Live Refactoring Environment, a real-time

Integrated Development Environment (IDE) tool that identifies, suggests, and automates

'Extract Method' refactorings to enhance code quality and streamline programming

solutions. To validate the effectiveness of this tool, an empirical experiment was conducted

with 42 participants across three open-source projects. Results indicated that the live

refactoring tool fosters an awareness of potential code flaws, promotes better quality

software, and is comparatively more efficient than manual refactoring(S. Fernandes et al.,

2022).

In 2023, Fernandes et al. presents an empirical study on the use of a Live Refactoring

Environment to improve code quality. The tool is designed to detect "code smells," which are

indicators of deeper problems in software code, and suggests refactorings in real time. The

results showed that the Live Refactoring Environment increased developers' awareness,

http://www.minarjournal.com/

Volume 5, Issue 3, September 2023

23

www.minarjournal.com

leading to higher code quality and faster coding compared to manual refactoring(S.

Fernandes et al., 2023).

Table 1, Summarizes the factors studied by the mentioned researchers in previous

works and their respective impacts on quality characteristics.

Table (1) Summarizes the findings of the literature review

Year Authors Factors Studied Quality Characteristics Impacted

0202 Hegedűs et al Cohesion, LOC, and complexity
Reconstruction, maintainability,

testability, and fault identification

0200 Dig A multiple circles of refactoring

Maintainability, navigability,

productivity, scalability, and

performance

0200 Meananeatra A multiple circles of refactoring

Maintainability, total number of

eliminated faults, sequence of

reconstruction dimensions, and total

number of changed software

components

0202 Fujiwara et al Version archives Refactoring and maintainability

0202 Chaparro et al RIPE “Refactoring Impact PrEdiction”

Code quality metrics (RFC, CBO,

DAC, MPC, LOC, NOM, CYCLO,

LCOM2, LCOM5, NOC, DIT)

0202 Han et al

MIS “Maximal Independent Set”

applying multiple processes of refactoring

simultaneously.

Refactoring and maintainability

0202
Malhotra and

Chug

Abstraction level, comprehensibility,

scalability, modifiability, and reusability.
Refactoring and maintainability

0202
Mohan and

Greer

Evaluation of the approach using metrics

such as QMOOD and CK, and improvement

based on six different search algorithms.

MultiRefactoring and maintainability

0202 Mohan et al

Code prioritization measurement,

reconstruction coverage, element novelty,

and improvement of automatic

reconstruction.

MultiRefactoring and maintainability

0202 Morales et al

"Rebuilding by Imitating People's

Operations" (RePOR), an automated

reconstruction approach based on partial

demand reduction techniques.

Restructuring, understandability,

and maintainability

2021 Draz et al Complexity, Inheritance, Coupling, Cohesion
Improving software quality (except

size) through code refactoring

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

24

www.minarjournal.com

operations

2022
Fernandes et

al
'Extract Method' refactorings

Enhancing code quality and

streamlining programming solutions

through a Live Refactoring

Environment

2023
Fernandes et

al

'Code Smells' detection and real-time

suggestions

Increasing developers' awareness

and improving code quality and

coding efficiency compared to

manual refactoring

Through the above table, which contains 10 studies that have investigated and

summarized the impact of software reconstruction and its effect on quality characteristics,

especially maintainability. Through the review, the study summarizes the following points:

(1) Applying reconstruction activities leads to an increase in the values of some quality

characteristics, such as understandability and maintainability. (2) There are many factors

that affect reconstruction activities, including cohesion, coupling, information hiding, and

packaging. (3) Reconstruction helps improve the source code without changing the

program's behavior. (4) Many reconstruction processes can be applied.

MAINTAINABILITY

"Maintainability" is a term in software engineering that refers to the ease with which a

software system or its components can be modified or maintained(Di Biase et al., 2019).

This includes tasks such as bug fixing, adding new features, and adapting to new

environments or requirements. Maintainability is extremely important because it directly

affects the cost and efficiency of maintaining a software system throughout its life

cycle(Heričko & Šumak, 2023). It also serves as a measure of the ease of modifying,

updating, and repairing software systems. It is easy to change and update a software system

that has high maintainability, which leads to reduced errors and maintenance costs. On the

other hand, it is difficult to change and update a software system with low maintainability,

which leads to higher maintenance costs and more errors(Gradišnik et al., 2020;

Ogheneovo, 2014).

The Maintainability Index (MI) is a measure of the maintainability of a software

system, and is strongly correlated with maintainability(Kaur & Singh, 2017). MI is

expressed as a numerical scale ranging from 0 to 100, where higher numbers indicate a

higher level of maintainability. It is calculated using various metrics such as lines of code

(LOC), code complexity (CC), and Halstead complexity(Hu et al., 2023). A high MI score

means that the system is more maintainable, which leads to lower maintenance costs and

improved efficiency, while a low MI score indicates the opposite. Modifying and maintaining

systems with low MI scores may be more difficult, leading to increased maintenance costs

http://www.minarjournal.com/

Volume 5, Issue 3, September 2023

25

www.minarjournal.com

and reduced efficiency(Molnar & Motogna, 2020). To ensure maintainability, the MI for the

software system should be improved(Hong-liang, 2020; M.A.M.Najm, 2014).

The maintenance index(MI) is determined by calculating various metrics such as Lines

of Code (LOC), Halstead Volume (HV), Cyclomatic Complexity (CC), and Comment to Code

Ratio (CM) (Heitlager et al., 2007).

The maintenance index can be calculated using three different formulas (M.A.M.Najm,

2014):

 The original formula:

MI = 171 - 5.2 * ln(HV) - 0.23 * (CC) - 16.2 * ln(LOC)

...(1)

 The formula derived by the Software Engineering Institute (SEI):

MI = 171 - 5.2 * log2(HV) - 0.23 * (CC) - 16.2 * log2(LOC) + 50 * sin(sqrt(2.4 * CM))...(2)

 The formula derived by Microsoft Visual Studio since 2008:

MI = MAX(0, (171 - 5.2 * ln(HV) - 0.23 * (CC) - 16.2 * ln(LOC)) * 100 / 171)

(3)

In equation (2), the Comment Ratio metric is used, which affects maintainability since

comments help to clarify the purpose of the code and ease the maintenance process. The

threshold value for the maintenance index is specified in Table 2.

Table (2) Threshold values for MI (M.A.M.Najm, 2014)

Maintainability

Index

Assessmen

t

Less than 65 Low

65 to 85 Medium

Greater than 85 High

In short, having a high level of maintainability in software systems is of utmost

importance because it can lead to reduced maintenance costs, fewer errors, and improved

overall quality. To achieve this, techniques such as code refactoring can be used. It is

recommended to continuously improve the program's maintainability index and make

necessary modifications accordingly.

LINE OF CODE (LOC)

This measure is one of the simpler metrics, as it is easy to calculate and can be used

to measure the complexity of a program(Sotonwa et al., 2023). The larger the number of

lines of code, the more complex the program becomes. The metric for the number of lines of

code can be divided into several types(Aswini & Yazhini, 2017; Sotonwa et al., 2023).

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

26

www.minarjournal.com

 The first type is Physical Lines of Code (LOC), which deals with all the source code

lines of the software without any consideration for its content. This scale calculates only the

software that will be delivered to the customer and is sometimes referred to as Non-

Comment Lines of Code (NCLOC) or effective Lines of Code (eLOC), excluding blank spaces

and comments(Parsa et al., 2023).

 The second type is Logical Line of Code (iLOC), which calculates the number of

statements in the program. For example, in C and Java, the program statement ends with a

semicolon, but this scale does not apply to all languages.

 The third type is Comment Lines of Code (CLOC), which calculates the number of

comment lines in the source code. This scale does not consider the content or quality of

these comments, whether they provide good information about the program or not. For

example, in C and Java, single-line comments start with the symbol (//), and block

comments start with the symbol (/*) and end with the symbol .)*/(

 Finally, the Comment Rate (CR) scale calculates the ratio of CLOC to LOC. This scale

provides a percentage index of the amount of commenting in the program. As the ratio

increases (to a certain extent), the understandability of the program increases. The CR can

be calculated using the following formula: CR = (CLOC / LOC) * 100 (4)

HALSTEAD METRICS

Halstead introduced a set of metrics through static analysis of programming code that

can be calculated using a fixed formula. These metrics rely on extracting what is known as

operators and operands [23]. Operators include all mathematical operations as well as

special characters used in the language, such as brackets and parentheses, while operands

include variables, constants, and character strings. Through a set of equations, difficulty

and size can be calculated as well as estimation of effort and time(Tashtoush et al., 2023).

These equations primarily depend on four basic variables(Ardito et al., 2020; Posnett et al.,

2011):

 Unique Operator Count, denoted by n1

 Unique Operand Count, denoted by n2

 Total Operator Count, denoted by N1

 Total Operand Count, denoted by N2

Through these variables, Halstead derived the following equations (metrics)(Kencana et

al., 2020; Madi et al., 2013; Navas-Su & Gonzalez-Torres, 2022):

1. Program length: represents the total length of the program:

N = N1 + N2 (5)

2. Program vocabulary: represents the total number of unique program

statements (operands and operators) without repetition:

n = n1 + n2 (6)

http://www.minarjournal.com/

Volume 5, Issue 3, September 2023

27

www.minarjournal.com

3. Program volume: represents the minimum number of bits required to

represent the program:

V = (N1+N2)log2(n1+n2) (7)

4. Program difficulty: gives an indication of the difficulty of developing and

understanding the program:

D = [(n1)/2] (N2/n2) (8)

5. Programming effort: is an indicator of the effort required to understand and

develop the program:

E = V * D (9)

6. Time to implement: this metric estimates the time required to represent the

program in seconds and was derived through experiments and studies:

T = E / 18 (10)

7. Program level: is the inverse of error proneness, meaning that the lower the

level, the more likely errors are to occur:

L = 1 / D (11)

8. Estimated number of errors: is an estimation of the number of errors that

might exist in the program module:

B = [E ^ (2/3)] / 3000 (12)

CYCLOMATIC COMPLEXITY(CC)

McCabe's Cyclomatic Complexity is a well-known and popular measure of structural

complexity(Alraddadi, 2023)(Lenarduzzi et al., 2023). It is a measure of the number of

control flows in a Control Flow Graph (CFG) of a programming module. The number of paths

in the program is calculated through this graph. The higher the number of paths in the

program, the higher the complexity. The Cyclomatic Complexity can be calculated by

counting the number of decision points, represented by jump statements and loops (if else,

switch cases, while, do while, for each, for loops) and adding one(Sarwar et al., 2013). The

Cyclomatic Complexity can also be calculated by representing the program module using

the basic structures of a flowchart, where it can be calculated in two ways (which give the

same result), either by counting the nodes and edges of the CFG or by counting the number

of binary decision points, which are the nodes where two branches emerge(Lavazza et al.,

2023). The cyclomatic complexity can be calculated using one of two equations(Garg, 2013):

CC = e - n + 2 (13)

where e represents the number of edges and n represents the number of nodes.

CC = NO. of Decisions + 1 (14)

where NO. of Decisions represents the number of loops that have branching paths.

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

28

www.minarjournal.com

Generally, the cyclomatic complexity (CC) is an important measure of code complexity

and can be useful in determining the maintainability of a program.

CODE REFACTORING

Code Refactoring refers to the act of restructuring or reorganizing software code

without altering its functionality. Its primary objective is to enhance the code's quality by

making it more scalable, readable, and maintainable. There exist several refactoring

strategies that can be employed to improve software maintainability(Kaur & Singh, 2017).

The practice is considered a fundamental step in software development, especially in agile

methodologies. Refactoring eliminates code smells, reduces technical debt, and enhances

the overall software architecture. It helps developers to identify issues in the codebase and

enables them to address these problems systematically. The process of refactoring may

involve changing the code's structure, design patterns, or class hierarchy while ensuring

that the output remains the same. It is an iterative process that requires continuous testing

and monitoring to ensure that the code meets the intended specifications. Refactoring is a

crucial activity that helps to maintain software sustainability and improve the overall quality

of the code (Fernandes et al., 2020; Jonsson, 2017; Wahler et al., 2017).

 Methods, classes, and variables can be used to improve code organization and

readability.

 Replace complex expressions with simple, reusable components.

 Remove unnecessary or redundant code instructions.

 Rename variables, methods, and classes to improve clarity and consistency.

 Improve the use of data structures and algorithms to increase performance .

By applying these techniques, it is possible to improve the maintainability index of a

software system, making it easier to understand, modify, and maintain.

IMPLEMENTING THE PROPOSED MODEL (MMIBAR)

The purpose of measuring the maintainability index before and after restructuring or

rebuilding the source code using the proposed MMIBAR model is to:

 Evaluate the impact of rebuilding on the maintainability of the software system.

 Identify areas in the code that are difficult to maintain and require improvement or further

rebuilding.

 Evaluate the impact of different code restructuring techniques and strategies.

 Compare the cost and effort of rebuilding with the resulting improvements in

maintainability.

 Provide future maintenance and development efforts.

http://www.minarjournal.com/

Volume 5, Issue 3, September 2023

29

www.minarjournal.com

And the maintenance index was calculated using three formulas: the original formula,

the derivative formula according to the Software Engineering Institute, and the formula

adopted by Microsoft Visual Studio, followed by comparing the results.

ALGORITHM STEPS FOR (MMIBAR) MODEL

Step 1: In this step, all files (classes) of Python or Java type are read by specifying the

path of the folder or directory. This is done by clicking on the button where the interface

appears, and the folder is specified.

Step 2: In this step, files with the extension java or Py are searched for and the file is

selected to calculate the metrics for each file (class) in the folder or directory.

Step 3: The number of lines for each class is calculated by the LOC_Counter function,

and the information obtained is stored in a matrix of the Class_LOC class.

Step 4: The cyclomatic complexity CC of each class is calculated by analyzing the

source code and extracting decision-making statements using equation (14), and the

information is stored in a matrix of the Class_CC class.

Step 5: The ratio of the number of comment lines to the number of code lines is

calculated according to equation (4)

Step 6: The number of operators and operands for each class is calculated by dividing

the code into Tokens, comparing them using a set of functions in the Halstead class. The

class size metric is calculated according to equation (7).

Step 7: The three equations (3)(2)(1) for the maintainability index are calculated for

each class based on the metrics obtained from the previous steps.

Step 8: In this final step, the final metrics are displayed in tables.

The figure 1, Illustrates the steps of the proposed model (MMIBAR) which include

inputs, processing, and outputs.

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

30

www.minarjournal.com

Figure (1) Shows the operation of the proposed model

The flowchart in Figure 2, Illustrates the methodology for measuring the

maintainability index (MI) of a software system before and after code refactoring.

Figure (2) Flowchart for the operation of the proposed model.

http://www.minarjournal.com/

Volume 5, Issue 3, September 2023

31

www.minarjournal.com

CASE STUDY

The designed model was tested on a Payroll Management System, a program created

in Java language that aims to help the company efficiently manage its employees' salaries.

Using the system can significantly improve the company's work by monitoring its employees'

performance from time to time and calculating salaries automatically without using paper-

based work. It provides the company with the ability to manage information for all

employees and add, update, delete, create, print reports, and more. The program consists of

13 Java file types. The test results of the model showed that there is a difference between

the maintainability index value before and after code refactoring and code clone removal,

which is an increase in the MI value. This leads to improving the quality and maintenance of

the program.

Table (3) Shows the results of the measurements for three files

File Name LOC CR HV CC

EmployeePayrollSystem.java 21 4.76 292.842 1

db.java 36 2.78 885.804 1

Audit_details.java 279 2.87 11400.381 3

Table 3, showing different metrics for three different files in a case study (Payroll

Management System). include Lines of Code (LOC), Comment Rate (CR), Halstead Volume

(HV), and Cyclomatic Complexity (CC).

 LOC: It measures the number of lines of code in a file.

 CR: It measures the proportion of lines of comments to the total number of lines of

code.

 HV: It measures the complexity of a program by analyzing the operators and

operands used in it.

 CC: It measures the number of independent paths through a program's source code.

For example, EmployeePayrollSystem.java has 21 lines of code, a comment rate of

4.76, an HV of 292.842, and a CC of 1. Similarly, db.java has 36 lines of code, a comment

rate of 2.78, an HV of 885.804, and a CC of 1. Finally, Audit_details.java has 279 lines of

code, a comment rate of 2.87, an HV of 11400.381, and a CC of 3.

These metrics are useful in identifying areas of the code that may be more prone to

errors or more difficult to maintain. For example, a high HV and CC could indicate that a

file is more complex and may require more effort to modify or debug in the future. On the

other hand, a high CR indicates that the code is well-documented and easier to understand,

which could lead to fewer errors and faster maintenance.

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

32

www.minarjournal.com

Table (4) Shows the results for three files.

File Name
MI(Before

Refactoring)

MI(After

Refactoring)
Maintainability

EmployeePayrollSystem.java 91.91 100 High to maintain

db.java 77.43 83.780
Moderate to

maintain

Audit_details.java 30.51 40.348
Difficult to

maintain

Table 4, summarizes the measurement of maintainability index for three files and the

effect of rebuilding on their maintainability. Through analysis, developers can identify areas

of improvement in the code and take steps to make it more maintainable.

CONCLUSION

The conclusion of the research on measuring the maintainability index before and

after code restructuring should summarize the main findings and discuss their impact on

software development. Some potential points to consider may include:

 The study results show that code restructuring can significantly improve the

maintainability index of software systems. This indicates that restructuring is an important

technique for improving code quality and maintenance in the long term.

 The specific restructuring techniques used in the study, such as variable extraction or

function renaming, had different effects on the maintainability index. This suggests that

some techniques may be more effective in improving maintainability in certain situations.

 The results obtained have positive effects on the development process, as the restructuring

processes reduce cost and provide appropriate time for development.

 Further research should be conducted to find a deeper or more extensive relationship

between code restructuring and maintainability, such as the effects of different

restructuring techniques on various types of software systems.

http://www.minarjournal.com/

Volume 5, Issue 3, September 2023

33

www.minarjournal.com

REFERENCES

Alraddadi, S. (2023). Detecting Security Bad Smells of Software by using Data Mining.

Ardito, L., Coppola, R., Barbato, L., & Verga, D. (2020). A tool-based perspective on software

code maintainability metrics: a systematic literature review. Scientific

Programming, 2020, 1–26.

Aswini, S., & Yazhini, M. (2017). An assessment framework of routing complexities using

LOC metrics. 2017 Innovations in Power and Advanced Computing Technologies,

i-PACT 2017, 2017-Janua, 1–6. https://doi.org/10.1109/IPACT.2017.8245022

Caro, A., Calero, C., Mendes, E., & Piattini, M. (2007). A probabilistic approach to web

portal’s data quality evaluation. QUATIC 2007 - 6th International Conference on

the Quality of Information and Communications Technology, March 2015, 143–

153. https://doi.org/10.1109/QUATIC.2007.8

Chaparro, O., Bavota, G., Marcus, A., & Di Penta, M. (2014). On the impact of refactoring

operations on code quality metrics. 2014 IEEE International Conference on

Software Maintenance and Evolution, 456–460.

Di Biase, M., Rastogi, A., Bruntink, M., & Van Deursen, A. (2019). The delta maintainability

model: Measuring maintainability of fine-grained code changes. Proceedings -

2019 IEEE/ACM International Conference on Technical Debt, TechDebt 2019,

113–122. https://doi.org/10.1109/TechDebt.2019.00030

Dig, D. (2011). A refactoring approach to parallelism. IEEE Software, 28(1), 17–22.

https://doi.org/10.1109/MS.2011.1

Draz, Farhan, M. S., Eldefrawi, M. M., Draz, A. M. E. S. M., Farhan, M. S., & Eldefrawi, M.

M. (2021). A Survey of Refactoring Impact on Code Quality. FCI-H Informatics

Bulletin, 3(1), 16–22. https://doi.org/10.21608/FCIHIB.2021.54539.1007

Fernandes, E., Chávez, A., Garcia, A., Ferreira, I., Cedrim, D., Sousa, L., & Oizumi, W.

(0202). Refactoring effect on internal quality attributes: What haven’t they told

you yet? Information and Software Technology, 126.

https://doi.org/10.1016/j.infsof.2020.106347

Fernandes, S., Aguiar, A., & Restivo, A. (2022). LiveRef: a Tool for Live Refactoring Java

Code. Proceedings of the 37th IEEE/ACM International Conference on

Automated Software Engineering, 1–4.

Fernandes, S., Aguiar, A., & Restivo, A. (2023). Empirical Evaluation of a Live Environment

for Extract Method Refactoring. ArXiv Preprint ArXiv:2307.11010.

Fujiwara, K., Fushida, K., Yoshida, N., & Iida, H. (2013). Assessing refactoring instances

and the maintainability benefits of them from version archives. Lecture Notes in

Computer Science (Including Subseries Lecture Notes in Artificial Intelligence

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

34

www.minarjournal.com

and Lecture Notes in Bioinformatics), 7983 LNCS, 313–323.

https://doi.org/10.1007/978-3-642-39259-7_25

Garg, M. (2013). Analysing the quality attributes of AOP using CYVIS tool. International

Journal of Computers & Technology, 4, c2.

Gradišnik, M., Beranič, T., & Karakatič, S. (0202). Impact of historical software metric

changes in predicting future maintainability trends in open-source software

development. Applied Sciences, 10(13), 4624.

Han, A. R., Bae, D. H., & Cha, S. (2015). An efficient approach to identify multiple and

independent Move Method refactoring candidates. Information and Software

Technology, 59, 53–66. https://doi.org/10.1016/j.infsof.2014.10.007

Hegedűs, G., Hrabovszki, G., Hegedűs, D., & Siket, I. (0202). Effect of object oriented

refactorings on testability, error proneness and other maintainability attributes.

1–7. https://doi.org/10.1145/1890692.1890700

Heitlager, I., Kuipers, T., & Visser, J. (2007). A practical model for measuring

maintainability - A preliminary report. QUATIC 2007 - 6th International

Conference on the Quality of Information and Communications Technology, 30–

39. https://doi.org/10.1109/QUATIC.2007.7

Heričko, T., & Šumak, B. (0202). Exploring Maintainability Index Variants for Software

Maintainability Measurement in Object-Oriented Systems. Applied Sciences,

13(5), 2972.

Hong-liang, C. (2020). The Verification Method of Maintainability Indexes of Equipment

Based on UML. Journal of Physics: Conference Series, 1678(1), 12068.

Hu, Y., Jiang, H., & Hu, Z. (2023). Measuring code maintainability with deep neural

networks. Frontiers of Computer Science, 17(6), 176214.

Jonsson, A. (2017). The Impact of Refactoring Legacy Systems on Code Quality Metrics.

http://www.diva-portal.se/smash/get/diva2:1114582/FULLTEXT01.pdf

Kaur, G., & Singh, B. (2017). Improving the quality of software by refactoring. Proceedings of

the 2017 International Conference on Intelligent Computing and Control

Systems, ICICCS 2017, 2018-Janua, 185–191.

https://doi.org/10.1109/ICCONS.2017.8250707

Kencana, G. H., Saleh, A., Darwito, H. A., Rachmadi, R. R., & Sari, E. M. (2020).

Comparison of maintainability index measurement from Microsoft Codelens and

line of code. 2020 7th International Conference on Electrical Engineering,

Computer Sciences and Informatics (EECSI), 235–239.

Lavazza, L., Abualkishik, A. Z., Liu, G., & Morasca, S. (2023). An empirical evaluation of the

“Cognitive Complexity” measure as a predictor of code understandability.

Journal of Systems and Software, 197, 111561.

http://www.minarjournal.com/

Volume 5, Issue 3, September 2023

35

www.minarjournal.com

Lenarduzzi, V., Kilamo, T., & Janes, A. (2023). Does Cyclomatic or Cognitive Complexity

Better Represents Code Understandability? An Empirical Investigation on the

Developers Perception. ArXiv Preprint ArXiv:2303.07722.

M.A.M.Najm, N. (2014). Measuring Maintainability Index of a Software Depending on Line of

Code Only. IOSR Journal of Computer Engineering, 16(2), 64–69.

https://doi.org/10.9790/0661-16276469

Macharia, E. M., & Kimwele, M. (2022). A Metrics-Based Maintainability Estimation

Framework for Object Oriented Software in Design Phase. 1–12.

Madi, A., Zein, O. K., & Kadry, S. (2013). On the improvement of cyclomatic complexity

metric. International Journal of Software Engineering and Its Applications, 7,

67–82.

Malhotra, R., & Chug, A. (2016). An empirical study to assess the effects of refactoring on

software maintainability. 2016 International Conference on Advances in

Computing, Communications and Informatics, ICACCI 2016, 110–117.

https://doi.org/10.1109/ICACCI.2016.7732033

Meananeatra, P. (2012). Identifying refactoring sequences for improving software

maintainability. 2012 27th IEEE/ACM International Conference on Automated

Software Engineering, ASE 2012 - Proceedings, 406–409.

https://doi.org/10.1145/2351676.2351760

Mohan, M., & Greer, D. (2017). MultiRefactor: Automated refactoring to improve software

quality. Lecture Notes in Computer Science (Including Subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 10611 LNCS, 556–

572. https://doi.org/10.1007/978-3-319-69926-4_46

Mohan, M., & Greer, D. (2019). Using a many-objective approach to investigate automated

refactoring. Information and Software Technology, 112, 83–101.

https://doi.org/10.1016/j.infsof.2019.04.009

Molnar, A.-J., & Motogna, S. (2020). Longitudinal Evaluation of Open-Source Software

Maintainability. ArXiv Preprint ArXiv:2003.00447.

Morales, R., Khomh, F., & Antoniol, G. (2020). RePOR: Mimicking humans on refactoring

tasks. Are we there yet? Empirical Software Engineering, 25(4), 2960–2996.

https://doi.org/10.1007/s10664-020-09826-7

Navas-Su, J., & Gonzalez-Torres, A. (2022). An approach for the forecasting of the

maintainability of system functionalities. Proceedings of the 2022 European

Symposium on Software Engineering, 33–42.

Ogheneovo, E. E. (2014). On the Relationship between Software Complexity and

Maintenance Costs. Journal of Computer and Communications, 02(14), 1–16.

https://doi.org/10.4236/jcc.2014.214001

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

36

www.minarjournal.com

Ouni, A., Kessentini, M., Sahraoui, H., Inoue, K., & Deb, K. (2016). Multi-criteria code

refactoring using search-based software engineering: An industrial case study.

ACM Transactions on Software Engineering and Methodology, 25(3).

https://doi.org/10.1145/2932631

Parsa, S., Zakeri-Nasrabadi, M., Ekhtiarzadeh, M., & Ramezani, M. (2023). Method name

recommendation based on source code metrics. Journal of Computer Languages,

74, 101177.

Posnett, D., Hindle, A., & Devanbu, P. (2011). A simpler model of software readability.

Proceedings of the 8th Working Conference on Mining Software Repositories, 73–

82. https://doi.org/10.1145/1985441.1985454

Sarwar, M. M. S., Shahzad, S., & Ahmad, I. (2013). Cyclomatic complexity: The nesting

problem. Eighth International Conference on Digital Information Management

(ICDIM 2013), 274–279.

Sotonwa, K., Adeyiga, J., Adenibuyan, M., & Dosunmu, M. (2023). Survey of Schema

Languages: On a Software Complexity Metric. Advances in Information and

Communication: Proceedings of the 2023 Future of Information and

Communication Conference (FICC), Volume 2, 349–361.

Tairas, R. (2006). Clone detection and refactoring. Proceedings of the Conference on Object-

Oriented Programming Systems, Languages, and Applications, OOPSLA, 2006,

780–781. https://doi.org/10.1145/1176617.1176722

Tashtoush, Y., Abu-El-Rub, N., Darwish, O., Al-Eidi, S., Darweesh, D., & Karajeh, O. (2023).

A Notional Understanding of the Relationship between Code Readability and

Software Complexity. Information, 14(2), 81.

Wahler, M., Drofenik, U., & Snipes, W. (2017). Improving code maintainability: A case study

on the impact of refactoring. Proceedings - 2016 IEEE International Conference

on Software Maintenance and Evolution, ICSME 2016, 493–501.

https://doi.org/10.1109/ICSME.2016.52

http://www.minarjournal.com/

