

This article has been scanned by iThenticat No plagiarism detected

MINAR International Journal of Applied Sciences and Technology

 Article type : Research Article

 Date Received : 11/ 70 /2021

 Date Accepted : 08/ 80 /2021

 Date published : 01/ 90 /2021
 : www.minarjournal.com

 http://dx.doi.org/10.47832/2717-8234.3-3.8

MATLAB BASED HIL FRAMEWORK: A GUIDE TO BUILD A HARDWARE

IN THE LOOP DAQ PERIPHERAL

Hassan M. BAYRAM1 & Bilal A. MUBDIR2

Abstract

Testing and validating modern hardware such as some subsystems in modern vehicles

is a little challenging especially before assembling them into the final product. To

achieve a valid real-time test, the tested hardware or unit must be placed into its real-

time environment which is not possible in some cases. Recently, and with the presence

of advanced simulation software applications, the hardware environment could be

simulated easily to fulfill the real-time test properly. Simulating an environment in one

loop with real physical hardware knowing as Hardware-in-the-loop is used nowadays in

various development fields, medical, industrial, research, and education. Amongst the

aforementioned, HIL is widely used in control systems applications. In the paper,

building a framework to enable hardware in the loop (HIL) simulation with the aid of

MATLAB/Simulink is discussed. Over serial communication, and inexpensive data

acquisition (DAQ) peripheral has been developed using a microcontroller unit. the

development of the framework is discussed to be used as a guide for building it by

using any microcontroller. The resultant performance appeal to excellent real-time

response with quite a small delay of about 70ms in the worst case.

Keywords: DAQ, HIL, Software Applications.

1 Koya University, Iraq
2 Sulaimani Polytechnic University, Iraq, bilal.mubdir@spu.edu.iq, https://orcid.org/0000-0001-8096-8027

http://www.ijler.net/
mailto:%20fa9867@gmail.com

59 | Hassan M. BAYRAM & Bilal A. MUBDIR

September 2021, Volume 3, Issue 3
 p. 58-68

Introduction
Hardware-in-the-loop (HIL) testing is the technology where real-time testing is applied to a physical
signal of a real target device by applying a test scenario with unlimited iterations until reaching the
optimum design or the final objective [1].
HIL test has become the dominant test in embedded software in the industrial and automotive
fields by connecting the real hardware I/O to the simulation software for its flexibility and cost-
effectiveness. Where, many companies now offer HIL commercial platforms, such as NI, Typhoon,
dSPICE, and many other companies.
Not limited to industrial or automotive fields, medical devices are now tested in the model-design
stage using HIL mythology. Before releasing the final product and due to the critical application of
the medical device, many medical manufacturers are going along with testing their embedded
software with the products earlier during the design stages effectively to revise the bugs and
validate the software and the hardware [2].
In the past few years, HIL becomes essential in developing the Embedded systems, reducing the
time consumed in development and even marketing. As the complexity of the products increases,
large systems are divided into multiple subsystems, where all are tested simultaneously. HIL
appeared to the scene to avoid fully physical tests due to their expensive cost, and fully simulation
tests for their inaccurate results.
Referring to figure (1), testing and validating a design during model-based design (MBD) consist of
different stages, software, processor, and hardware in the loop until reaching the validation [3].
Furthermore, a detailed guide for MDB can be found in [4].

Figure 1: Model-based (MDB) design process

HIL is all about the integration of the real physical world to the software simulation as shown in
figure (2) for testing the actual device and validate it [5]. Connecting the real target tested the
device and the simulation model together to form the HIL concept finally result in a closed-loop
system [6].

Figure 2: The outline of the Hardware in the loop.

 Minar Journal, 2021, Volume 3, Issue 3 | 60

September 2021, Volume 3, Issue 3
 p. 58-68

Commercially available HIL platforms in the markets for industrial and even for research and
educational purposes are expensive. This paper introduces a full guide for building an inexpensive
HIL framework by using any microcontroller with MATLAB/Simulink for providing HIL’s
functionalities. Any programming language can be used to develop the framework depending on
the microcontroller unit (MCU). In this paper, Atmega328P MCU from Atmel [7] has been used
which is easy to program using different integrated development environments and very cost-
effective.

Related works:
Various definitions for the HIL have been used in various articles, each from its perspective, and
the trend of its applications are discussed in the literature. A great review of the available
definitions has been reported by N. Brayanov and A. Stoynova in their article [8]. They highlighted
the history of HIL in addition to state its requirements and challenges.
Mascio CD and his colleagues have studied the philosophy of the heart to develop mathematical
models for the human heart based on HIL. The tested proposed peacemaker with the developed
model of the heart where the peacemaker was designed by using Raspberry Pi computer. Their
work proves that the peacemaker or any other medical device can be tested and validated without
the involvement of real humans. flexible software panel was developed to control and monitor the
heart model easily from the computer. The paper results show that the proposed system verify the
requirements as defined, where HIL could be a good option for not including humans in real
clinical trials [9]
In power system applications, J. Wu et al. have tested modeled active compensator (essential
power system component) with relay using real controller hardware. They developed the model of
the power active compensator under LabView software from NI and they evaluate it using the HIL
method with the external controller. Modeling the compensator from scratch was a challenge for
them but with the help of HIL tests, they achieved their final design. Their paper discussed the
procedure of the modeling in addition to the test and how the validation was made [10]
In the field of automotive engineering is where the most efforts of HIL occurred to develop
advanced Electronic Control Units (ECU) in electrical vehicles, H. Haupt et al. have used the HIL
to test the battery management system (BMS) of the electrical vehicle. They utilized a commercial
HIL simulator produced by dSPICE to emulate the batter cells by applying a simple batter model
for the Lithium-ion type. They receive the voltage of each simulated battery and total current in
addition to the temperature of the batteries and outer terminal voltage from the simulator. The
parts of the ECU have been bypassed and every sensor and load were modeled to generate a
complete simulate model for testing purposes. They claim that this method provides a flexible way
to simulate different failure scenarios as is the case in real electronics vehicles [11].
Moreover, in the electric vehicle industry, developing a real-time HIL platform (RT-HIL) for emulate
signal generation and measurement based on LabView software from NI is presented by J. Feng
et al. in [12]. They used the RT-HIL to control EMC by forming controller area network (CAN)
communication at 500kbps speed by using a USB-CAN adapter from a traditional personal
computer. Their proposed platform applied to diesel engines and hybrid vehicle controllers
supported by personal computers to display and analyze the simulation. They described every
implementation detail for developing the HIL board, simulating the signals, and implementation of
the analog signal generation and sensor measurement. Their paperwork concludes that their
platform is efficient even if it was small scale, but it can test and validate ECUs algorithms.
 On the other side, mechatronics is another field in which HIL tests are active and required due
to the high cost of the hardware used in robotics systems. Ciprian R. et al. have suggested
economic replacement for 2DOF robot by simulating its dynamic model in MATLAB/Simulink and
connecting it to real servo motors over target DAQ board called FiO Std board to implement
complete HIL simulation to analyze and control the actuation of the robot system. The HIL in their
paper is the servo motors, which worked as actuators controlled using pulse width modulation
(PWM) signal and they are modified to read their instantaneous position to be feedback to the
robot model in MATLAB/Simulink [13].

61 | Hassan M. BAYRAM & Bilal A. MUBDIR

September 2021, Volume 3, Issue 3
 p. 58-68

Proposed HIL Framework
In this paper, Real-time MATLAB/Simulink has been used in the host computer to simulate any
mathematical or dynamic model for any system, all output and input signals from/to the real
hardware part are interfaced using the MCU as a target DAQ peripheral as shown in Figure (3).

Figure (3): Typical real time Hardware in the loop testing system

In the experimental work of our paper, Atmega328P MCU has been chosen to be used as DAQ
peripheral for its inexpensive cost, availability in the markets, and adequate I/O resources
compared to its price. The Atmage328P has 14 digital I/O ports [7], where it is possible to connect
to 14 digital actuators or sensors. Also, it has 6 analog input channels for analog sensors and 6
possible output analog channels for analog actuators. Reading sensors or controlling actuators is
all about programming the MCU itself, for that reason we assumed that this part must be made by
the developer according to the application considered in the HIL.

Simulink HIL Configuration
The main objective in this section is to prepare the simulated model in MATLAB/Simulink to be
ready to communicate with the target DAQ peripheral and so the real hardware in real-time. An
official support package developed by MathWorks itself for accessing the resources of Arduino
board (which Atmega328P MCU-based development board) is available for free and easy to use
[14]. Nevertheless, the package is very limited and provides access only for the ports without any
ability to send/receive variables data. To overcome the limitation issues, this guide provides a raw
method for accessing every port and variable in the MCU is presented.
 Considering sending single “float” data from Simulink to the DAQ unit or vice versa over
USB cable, the first stage is to convert the USB protocol to the default Serial protocol (UART). This
could be done using a UART circuit, for instance; FT232RL or any other equivalent IC as shown in
figure (4).

Figure (4): the communication between MCU and the host computer over USB

The host computer needs to be configured according to the MCU serial communication settings.
To do so, the “Serial Configuration” block is used in Simulink to specify the baud rate of the serial

 Minar Journal, 2021, Volume 3, Issue 3 | 62

September 2021, Volume 3, Issue 3
 p. 58-68

data communication, number of bits, synchronization bits, and other serial communication settings
shown in figure (5).

Figure (5): Serial configuration block and its settings

Now, to send data from the DAQ unit to the Simulink another block called “Serial Receive” is used.
This block must be configured carefully with the DAQ unit to let the data deliver properly to the
DAQ. Referring to figure (6), the Communication port must be selected according to the chosen
option in the Serial Configuration block.

Figure (6): Serial Receive block and its settings

Other settings are illustrated in Table (1), and they are very important in setup the DAQ unit’s
framework. Every single setting can make difference in data communication speed, so the
simulation speed. Misconfigure the receive block or the DAQ unit could lead to wrong
synchronization and fault in simulation.
Table (1): Setting parameters for the “Serial Receive” block in Simulink

Setting Parameter Description

Header
This data (Character/String) could be appended to the payload package as a
header. It used as an additional layer of synchronization with the target DAQ.

Terminator This data also attached to the end of the payload message.

Data Size
The number of data package, if single data to be received it must be [1 1], if
multiple packages of data are to receive then it could be [1 N], where N is the
number of single data type to be received from DAQ.

Data Type
Here is the place where the data type must be defined, “float” data in
MATLAB for example defined as “single”.

Enable blocking This option blocks the simulation until receiving the full package of data

63 | Hassan M. BAYRAM & Bilal A. MUBDIR

September 2021, Volume 3, Issue 3
 p. 58-68

mode

Block sample time The duration on which the DAQ is sending data to Simulink

The “Serial Receive” block should be followed by “Data Type Conversion” block to convert the
received data into “Double” type as shown in figure (7), to process the receive data and make it
compatible with the data flow in Simulink for other simulation purposes, like applying mathematical
operations, or display the received data on the scope.

Figure (7): Final block diagram for receiving data from target DAQ unit.

On the other hand, to send data from the Simulink environment to the target DAQ unit, “Zero-
Order Hold” block has been used as Analog to Digital converter (ADC) and sample the data at a
specific rate that represents the duration for snap the sample of the data, which defined the rate of
sending data. Moreover, the “Data Type Conversion” block is used after the “Zero-Order Hold” to
convert the sampled data to be sent into “Single” type data which is equivalent to “float” type than
before sending that data the data bytes must be packed into 4 bytes payload and that has been
done by using “Byte Packing” block then “Serial Send” block has been used to send the data to the
DAQ unit. The configuration for each block is revealed in figure (8) along with the final block
diagram, where the important settings parameters are previously described in Table (1).

Figure (8): Final block diagram for sending data to target DAQ unit.

When combining both receiving and sending blocks together, the external real-time hardware
could be connected in one loop with the Simulink model through the DAQ unit to form a complete
HIL, figure (9) reveals the full diagram of the real-time HIL configuration for sending/receiving
single float variable.

 Minar Journal, 2021, Volume 3, Issue 3 | 64

September 2021, Volume 3, Issue 3
 p. 58-68

Figure (9): Complete Simulink real time HIL model for sending/receiving single float variable.

When the HIL system has multiple numbers of variables to be communicated between the real
hardware and the simulation model, the model of the figure (9) is modified to accept multiple data
variables to be sent or receive. For the receiving side, to receive multiple variables (N), the only
setting parameter to be changed is the “Data Size” on the “Serial Receive” block and it became [1
N], where (N) is the total number of variables of float type. For example, to receive six float
variables from the DAQ unit as shown in figure (10), the data size set would be [1 6] followed by a
“Demux” block to decode the received variables into six separated variables.
However, the “Serial Send” block doesn’t need any change to send multiple variables. The change
is on the way to preparing the data before the sending process. The data must be gathered in one
vector using “Vector Concatenate” and the output feed to the “Zero-Order Hold” block, then data
converted to “Single” type using “Data Type Conversion” block and finally before the “Serial Send”,
the data are passed through “Byte Packing” block, all with the same previous settings. The final
diagram of the real-time HIL configuration for sending/receiving multiple float variables is shown in
figure (10).

Figure (10): Complete Simulink real time HIL model for sending/receiving multiple float variables.

Target DAQ Programming
As mentioned before, the MCU is acting as a DAQ to enable communication between the host
computer and the real hardware. The Atmega328 used in this research has been programmed
using C language in different cases, sending single-variable data, receiving single-variable data,
sending multiple variables data, and receiving multiple variables data.
When sending a single variable to the host computer, the data package must be led by header if it
is considered in Simulink and followed by terminator if considered too. When a single float variable
is intended to be sent, the variable bytes must be sent one by one in four parts then followed by
terminator if considered. Noting that every sending procedure must be done at a rate equal to the
sampling rate of the simulation, which can be achieved by delaying the process of sending data for
the desired sampling time TSampling as shown in the figure (11).
On the flip side, when receiving the data from the host computer the same process will be followed
in a reverse direction with some extra operations. In the reading receiving data process, the delay
for sampling time TSampling is not essential, whenever the data arrived, it could be processed.
When a single float variable is intended to be received, every four bytes received must be
combined to get the full variable. Again, if header or terminator are considered, they must be
excluded, and conditions used to extract the variable data as shown in figure (12).

65 | Hassan M. BAYRAM & Bilal A. MUBDIR

September 2021, Volume 3, Issue 3
 p. 58-68

In the case of multiple variables, the process explained previously in figures (11) and (12) are
repeated for N times equal to the number of variables but the repeated process for all variables
must be performed within the one segment of sampling time TSampling. However, there is no
need to repeat appending or checking header and terminator repeatedly, only one time with the
whole package of the sent or received variables. Both single and multiple variables codes for the
Atmega328P are available online [15].
Finally, the date to be sent to the host computer could be any data. Digital or analog ports that are
connected to sensors or could be read and send periodically to the host commuter or according to
specific criteria or variables resultant from processing algorithms could be sent also. The same
case for the received data, it could be actuators signals or processing parameters all is dependent
on the purpose of the application and the design of the developer.

Results & Discussion
Evaluating the operation of the proposed framework was done by using the single variable model
in figure (f9) and the multiple variables model in figure (f10). The experiments were performed to
send a sawtooth signal to the target DAQ for the single variable case and sending three different
variables to the target DAQ unit (sinewave, sawtooth, and squire wave) for the multiple variables
case. In both cases, the test was carried out to receive the echo of original signals from the target
DAQ. The purpose of this procedure is to check the real-time response of the framework for a
given sampling rate and baud rate. The sample time selected for the experiments was 50ms

Figure (11): Flow chart of sending

data process from DAQ

Figure (12): Flow chart of receding

data process by DAQ

 Minar Journal, 2021, Volume 3, Issue 3 | 66

September 2021, Volume 3, Issue 3
 p. 58-68

(20Hz), and the baud rate for serial communication was 115200 bps. The resultant response of the
echo signals for both cases is shown in figures (13) and (14).

Figure (13): The echo response of original sawtooth signal from target DAQ

Figure (14): The echo responses of original multi signals from target DAQ

With a close look at the results of the figure (15), by making a precise comparison between source
signals from Simulink with the echo returned signal from the target DAQ, it is seen that the delay is
about 50ms between the two signals. Where the echo signal is lagging by 50ms, and this is the
selected sampling time.

Figure (15): Close look at the echo response of original sawtooth signal from target DAQ

67 | Hassan M. BAYRAM & Bilal A. MUBDIR

September 2021, Volume 3, Issue 3
 p. 58-68

Although the 50ms appeared between the original and echoed signal, the real delay is half, 25ms.
This is because the appeared delay on the graphs is for the two-way communication, so the actual
response time is 25ms. If any data is to be sent or receive from one side to the other, it takes the
half value of the sampling time.

Conclusion
HIL technique provides a rapid method for testing and verification of control systems in various
application fields. The proposed framework provides an inexpensive and easy-to-build method for
including the real hardware into MATLAB/Simulink for real-time simulation. The proposal consists
of a microcontroller unit operated as a DAQ unit, interfaced with the real hardware, and
communicated with a host computer that has MATLAB/Simulink model configured to exchange
data. The number of channels or variables that could be exchanged between the real hardware
and the MATLAB/Simulink model is flexible, can be reduced or increased according to the
requirements very easily. The practical results have revealed a superior performance with a fast
response of 25ms when sampling rate 20Hz.

Acknowledgment
All experimental tests and the hardware implementation were carried out at the Training and
Development department, UrukTech Electronics Company, Iraq.

References
National Instruments Corp., “What is hardware-in-the-loop?” Www.ni.com, 28-Jun-2017. [Online].

Available: https://www.ni.com/en-lb/innovations/white-papers/17/what-is-hardware-in-
the-loop-.html. [Accessed: 06-Aug-2021].

The Mathworks, Inc. (R2021a). “Basics of Hardware-In-The-Loop simulation - MATLAB &
Simulink,” Mathworks.com. [Online].
Available:https://www.mathworks.com/help/physmod/simscape/ug/what-is-hardware-
in-the-loop-simulation.html. [Accessed: 06-Aug-2021].

T. VanGilder, “Why HIL is becoming critical for medical device testing,” Genuen.com. [Online].
Available: http://www.genuen.com/blog/why-hil-is-becoming-critical-for-medical-
device-testing. [Accessed: 07-Aug-2021].

The MathWorks, Inc., “Model-Based Design for Embedded Control Systems”, White paper, 2020,
available: https://www.mathworks.com/campaigns/offers/model-based-design-
embedded-control-systems.html

Jason Benfer, “What is Hardware-in-the-Loop (HIL) Testing?”, White paper, Genuen Company,
2021. Available: http://www.genuen.com/blog/what-is-hardware-in-the-loop-hil-testing

Peter Waeltermann, “Hardware-in-the-Loop: The Technology for Testing Electronic Controls in
Vehicle Engineering”, dSPACE Inc., April 11, 2016.

Atmel Corporation, “8-bit AVR Microntroller with 4/8/16/32K Bytes In-System Programmable
Flash,” ATmega 328P datasheet, 2019.

Nikolay Brayanov, and Anna Stoynova, "Review of hardware-in-the-loop - a hundred years
progress in the pseudo-real testing," Journal Electrotechnica& Electronica, vol. 54,
No. 3-4, pp. 70-84, Bulgaria, 2019.

C. D. Mascio and G. Gruosso, “Hardware in the loop implementation of the oscillator-based heart
model: A framework for testing medical devices,” Electronics (Basel), vol. 9, no. 4, p.
571, 2020.

J. Wu, Y. Cheng, A. K. Srivastava, N. N. Schulz and H. L. Ginn, “Hardware in the Loop Test for
Power System Modeling and Simulation,” 2006 IEEE PES Power Systems
Conference and Exposition, 2006, pp. 1892-1897, doi:10.1109/PSCE.2006.296201.

Hagen Haupt, Markus Plöger, JörgBracker,” Hardware-in-the-Loop Test of Battery Management
Systems”,IFAC Proceedings Volumes,Volume 46, Issue 21,2013,Pages 658-
664,ISSN 1474-6670, ISBN 9783902823489.

Jing Feng et al., "Principles and application of the real-time hardware-in-the-loop simulation
platform based on multi-thread and CAN," 2008 IEEE International Symposium on
Industrial Electronics, 2008, pp. 2225-2230, doi: 10.1109/ISIE.2008.4677041.

Rad, C., Maties, V., Hancu, O., Lapusan, C., 2012. Hardware-In-The-Loop (HIL) Simulation Used
for Testing Actuation System of a 2-DOF Parallel Robot. AMM 162, 334–343.

https://www.mathworks.com/campaigns/offers/model-based-design-embedded-control-systems.html
https://www.mathworks.com/campaigns/offers/model-based-design-embedded-control-systems.html
http://www.genuen.com/blog/what-is-hardware-in-the-loop-hil-testing

 Minar Journal, 2021, Volume 3, Issue 3 | 68

September 2021, Volume 3, Issue 3
 p. 58-68

The MathWorks Inc., “Simulink Support Package for ArduinoHardware”, Reference
Documentation, Version 21.1.0 (R2021a), March 2021.

Mubdir, Bilal (2021) HIL-Atmega328 (Version 1.0) [Source Code]. Available on:
https://github.com/bilalmubdir/MATLAB-Based-HIL/releases/tag/1.0

https://github.com/bilalmubdir/MATLAB-Based-HIL/releases/tag/1.0

