MINAR International Journal of Applied Sciences and Technology

Article type	: Research Article
Date Received	: 04/04/2021
Date Accepted	: 28/04/2021
Date published	: 01/06/2021
	: <u>www.minarjournal.com</u>
	http://dx.doi.org/10.47832/2717-8234.2-3.13

INFLUENCE OF ANNEALING TEMPERATURE ON THE STRUCTURAL AND OPTICAL PROPERTIES OF COPPER IODIDE THIN FILMS

Zuheer. N. MAJEED¹, Nadia Naeema DAHAHER²& Ebtisam K.ALWAN³

Abstract

Copper Iodide (Cul) nanoparticles with (250 nm) thickness have been prepared at RT on glass substrate using PLD technique with focused Nd:YAG laser beam at (800 mJ) with a frequency second radiation at (1064 nm) (pulse width 9 ns) repetition frequency (6 Hz), for 500 laser pulses incident on the target surface. The films annealed to different annealing temperatures (423K)and(523K). The structural and surface morphology properties of the deposited Cul thin films were examined by X-ray diffraction analysis (XRD) and Atomic force microscope (AFM). The Xray diffraction show that structure is a cubic phase with (111) plane preferential orientation direction. AFM was used to examine and measure the morphology and average diameter for Cul thin films respectively. It is observed that the average nanoparticles size increases with increasing of annealing temperature. The optical measurements showed that Cul thin films have direct allowed energy gap transition and the energy gap (Eg) decreases from (3.2eV) to (2.8 eV) with increasing annealing temperatures from RT to (532 K) for all samples.

Keywords: Copper Iodide, Optical Properties ,PLD Technique ,Annealing.

¹ Tikrit University, Iraq, Zuheeralbayaty2017@gmail.com, https://orcid.org/0000-0001-7662-0685

² Wasit University, Iraq, <u>nanaeema@uowasit.edu.iq</u>

³ Diyala University, Iraq, ibtisam 64@yahoo.com

1. Introduction

Copper iodide (Cul) is a chemical compound that is shaped like a white crystalline powder nailed,the copper iodide compound is brought from the reaction of potassium iodide with copper sulfate Duo[1]. The wide-gap for the Cul (3.1ev)and the excitation binding energy(62meV) [2]. Cul have three crystalline phases, α and γ phase is cubic structure , β phase is hexagonal structure . [3]. The optical transparencies for Cul thin film is a high over 80% in the visible region and high conductivity there is useful in solar cell [4, 5], light-emitting devices [6] and organic photo cell [7,8]. Pulse laser deposition is technique that allows stoichiometric a physical vapor deposition process and nanoparticles generation for high quality thin film of a huge of composite materials [9]. In pld the laser beam is focused onto the surface of the target by interaction with a high fluency. pulsed laser beam, plasma formation, and then deposited in pulses on a substrate surface in sufficiently energy density high and pulse duration short, according gas dynamic law [10]. PLD involves stages of target heating, melting, evaporation, ionization, re-solidification/re-crystallization and condensation [11,12]. In this research was studied the effect of the change temperature of the structural, Optical and Photoluminescence of Cul thin film prepared by PLD technique on glass substrate.

Expermintal Part

CulNanopowder with a purity of 99.99% were mixed together using a gate mortar for one hour. It was pressed into pellets with (1cm) diameter and (0.2 cm) thick, using hydraulic piston type (SPECAC), under pressure of 5 tons for 10 minute. The pellets were sintered in air to temperature (773 K) for 1 hours then cooled to room temperature. The glass substrates slides made in china from "AFCO", have dimension (75 x $25 \times 1.2 \text{ mm}$) were cleaned in a beaker have distilled water and put rinsed in ultrasonic for 15 minutes. After immersed in alcohol and washing substrates in ultrasonic for 15min to get rid fat and some oxide. PLD technique was used to deposit thin film inside a vacuum chamber 10-3 Torre. Using Nd: YAG focused laser an angle of 45° at 1064 nm, repetition frequency 6 Hz and laser pulse energy 800 mJ. The Cul thin film thickness measured using optical Interferometer technique utilize. The structural morphological and optical properties have been investigated. The prepared films were annealed and according to the value of x using a tube electric furnace at a temperature of (400 ° C) for one hour. Results and Discussion:

The x-ray diffraction (XRD) patren of Cul thin films deposited at different temperature (RT,423K and 523K) is shown in figure (1). Obviously, these figure exhibits significant sharp diffraction peaks at (1 1 1), 30° (020), $42^{\circ}(20 2)$ and $50^{\circ}(311)$, 52° (222), 61° (040), 67° (313), $6^{\circ}9(402)$ and 77° (242) corresponding to $2\Theta = 25^{\circ}$, 30° , 42° , 50° , 52° , 61° , 67° , $6^{\circ}9$, and 77° according to (JCPDS ## 96-901-3912). Also The identification of the crystalline phases leads to the conclusion that the major phase consists of the Cul thin films with cubic structure (Fiche No. 403-413) and have a polycrystalline structure with preferred orientation along (111) direction at 20 around 25° this means that this plane is suitable for crystal growth. It is clear that the annealing temperatures for Cul films has significant influence on the quality of the films. The highest of predominant peak of Cul at 25° (1 1 1) was increased after annealing and the FWHM decreased with annealing temperatures. Table(1) shows the values of all parameters that calculated from XRD results.

Figure.(1) The XRD patterns for Cul thinfilms deposited by PLD

Table(1) the results of XRD indicate grain size the diffraction angle forCul thin films

concent.	20 (Deg.)	FWHM	Int (Arb. Unit)	d _{hk1}	G.S (nm)	d _{hkl}	hkl	phase	card No.
		(Deg.)	Cimty	Exp.(A)		Std.(A)		-	
44	25	0.2310	1751.0	3.5000	35	3.4956	(111)	CuI	96-901-3921
	30	0.2887	241.2	3.0169	28.5	3.0273	(020)	CuI	96-901-3921
	42	0.2310	1307.4	2.1381	37	2.1406	(202)	CuI	96-901-3921
	50	0.3465	716.0	1.8217	25.3	1.8255	(311)	CuI	96-901-3921
	52	0.2887	101.2	1.7466	31	1.7478	(222)	CuI	96-901-3921
	61	0.5775	93.4	1.5100	16.0	1.5136	(040)	CuI	96-901-3921
	67	0.5197	140.1	1.3871	18	1.389	(313)	CuI	96-901-3921
	69	0.4620	77.8	1.3516	20.9	1.3538	(402)	CuI	96-901-3921
	77	0.4042	155.6	1.2343	25	1.2359	(242)	CuI	96-901-3921
45	25	0.1732	3182.9	3.5000	47	3.4956	(111)	CuI	96-901-3921
	30	0.2310	280.2	3.0227	35.6	3.0273	(020)	CuI	96-901-3921
	42	0.2310	1525.3	2.1381	37	2.1406	(202)	CuI	96-901-3921
	50	0.2887	786.0	1.8217	30.4	1.8255	(311)	CuI	96-901-3921
	52	0.3465	202.3	1.7466	26	1.7478	(222)	CuI	96-901-3921
	61	0.4042	132.3	1.5112	22.8	1.5136	(040)	CuI	96-901-3921
	67	0.4042	264.6	1.3871	24	1.389	(313)	CuI	96-901-3921
	69	0.3465	77.8	1.3516	27.9	1.3538	(402)	CuI	96-901-3921
	77	0.3465	163.4	1.2335	29	1.2359	(242)	CuI	96-901-3921
	25	0.1732	4575.9	3.4922	47	3.4956	(111)	CuI	96-901-3921
46	30	0.2310	217.9	3.0227	35.6	3.0273	(020)	CuI	96-901-3921
	42	0.2310	1136.2	2.1381	37	2.1406	(202)	CuI	96-901-3921
	50	0.2887	575.9	1.8217	30.4	1.8255	(311)	CuI	96-901-3921
	52	0.3465	108.9	1.7448	26	1.7478	(222)	CuI	96-901-3921
	61	0.2887	93.4	1.5112	32.0	1.5136	(040)	CuI	96-901-3921
	67	0.3465	147.9	1.3871	28	1.389	(313)	CuI	96-901-3921
	69	0.3465	77.8	1.3516	27.9	1.3538	(402)	CuI	96-901-3921
	77	0.3465	132.3	1.2335	29	1.2359	(242)	CuI	96-901-3921

The grain size and average roughness of Cul thin films for different annealing temperatures prepared by PLD technique have been measured using AFM, as show in figure (2). Observed that the different temperature have important effect in topography of the Cul thin film surface and the average diameter. When the temperature increases the surface roughness increases also and thus affects the distribution of nanoparticles and hence increases their size and the structure is vertical Columnar .The effect of annealing temperature can be interpreted that at the high annealing temperature atoms gain more energy, enabling

| 102

103 | Zuheer. N. MAJEED, Nadia Naeema DAHAHER & Ebtisam K .ALWAN

them to grow and diffuse rapidly which leads to the aggregation among them to form large nanoparticles. It is clear from the table (2) that the relationship is proportional between the Nano particles size and annealing temperature , the higher the annealing temperature the greater the nano particles size, this is due to the enhancement of crystalline and particles gain high energy which enable them to combine with each other and form large nano particles.

temperatures and laser pulse energy 800mJ.

Table(2) The AFM parameters of Cul films prepared under different annealing temperatures and laser pulse energy 800mJ.

Temperature (K)	Average nano particle size(nm)	Average roughnes (nm)
RT	36.7	6.5
423	57.88	5.36
523	90.69	2.57

The optical properties of as deposited CuI thin films have been determined by UV-VIS absorption spectroscopy in(300-1100) nm. The transmittance (T) of the prepared CuI thin films deposited at different temperature(RT,423K and 523K), that show in figure (3). in general, the transmittance of CuI thin films increases with increasing of λ , also transmittance decreases with increasing of annealing temperatures because increase reflection and absorption. The shifts of transmittance spectrum to the shorter wavelength higher energies compared to that of the annealed films for all CuI, may be attributed to the crystallite of film structure. It is clear from the above figure that for each analyzed thin film it has been noticed that the transmittance decreased for increasing different annealing temperature. This is probably due the improvement in the size of the Crystal and increasing roughness of the Surface of the CuI thin film with

Figure. (3) Transmittance spectrum for Cul thin film with different annealing temperatures

The figure (4) shows that the Variation in the absorption coefficient values versus wavelength for different annealing temperatures. One can see from this figures that the absorption coefficient of the Cul thin films is characterized using strong absorption in short wavelength (400-600)nm and sharp absorption in long wavelength (600-1100)nm. The values of absorption coefficient in short wavelength takes high ($\alpha > 6.00E+04$ cm-1) and then decreases Significantly with increasing wavelength. Decreasing in absorption coefficient versus wavelength belongs to the reverse proportionality with transmittance and also corresponds to the density absorption centers, such as the absorption of impurities, excitation transitions, the crystal lattice dependent on the conditions of film preparation. The explanation of the absorption edge to shorter wavelengths is refer to the disappearance the subsidiary band (tail states) which suggests from the dispersion theory that confirms the broading of an absorption edge by growth in grain size that causes increasing in the absorption coefficients and shift to longer photon energy i.e. shorter wavelengths.These results are close to the researchers [13,14]

Figure. (4) The absorption coefficient for Cul thin film with different annealing temperatures.

Energy gap depends on the conditions and the nature of the thin film structure and method of preparation that affect the crystal structure. The variation in the characteristics of the thin film structure is the reason for these variations in the energy gap. The Variation of (αhv) 2 with (hv) for Cul films with different annealing temperature is shown in the figure (5) its refers to direct allowed transition for Cul thin films. Band gap energies values decreases with increasing annealing temperatures for each Cul film prepared by PLD

105 | Zuheer. N. MAJEED, Nadia Naeema DAHAHER & Ebtisam K .ALWAN

technique as in table (3). Annealing leads to increase the local levels near the valence band and conduction band ,that is levels receive electrons and generate tails in the energy gap also tails works towards decrease the optical energy gap. These results are close to the researchers [13,14]

Figure.(5) Variation of $(\alpha h v)$ 2 with (h v) for Cul thin film at different annealing temperature.

Table (3):- Direct allowed band gap	for Cul thin films for I	aser wavelength 1064nm.
-------------------------------------	--------------------------	-------------------------

Х	Eg(eV)
RT	3.2
150	3
250	2.8

From the figure(6) of extinction coefficient(k) for Cul thin films with wavelength For the film at different annealing temperature .we see the extinction coefficient increase with increasing of wavelength and increases with increase of temperature. The high and low in the extinction coefficient is due to the difference in the absorbance.

Fig (6): The extinction coefficient for Cul thin film with different annealing temperatures.

The Cul film samples prepared under different annealing temperature the refractive index as a function of wavelength has been represented in the figure (7) in the spectral region UV-Visible (300-1100nm), the refractive index decreases in the visible region in the shorter wavelength. decreases refractive index (n) with Increasing temperature and the reason for this, first the Compactness after heat treatment decreases along with increasing the size of the crystal. Secondly, due to the effect of different annealing temperature on the morphology thin film, breed a change in the refractive index. The values of refractive index of Cul thin film are ranging from (1.09-2.55) with the range of wavelength (300-1100nm).

Figure. (7)TheRefractive index for Cul thin film with at different annealing temperature.

Figure(8) show the real parts for the dielectric constant increase monotonically with increasing wavelength, While the imaginary parts for the dielectric decreed. This can be understood on the following, the increase of ϵ i and decrees of of ϵ r with wavelength can be associated with the annealing temperature .The variation indicates that at low wavelength, the dielectric constant is low.

Figure. (8) show the variation of the dielectric constant εί&εT versus wavelength with different annealing temperatures

107 | Zuheer. N. MAJEED, Nadia Naeema DAHAHER & Ebtisam K .ALWAN

Figure (9) shows Photoluminescence (PL) of Cul thin film have been recorded with an excitation wavelength (220-1000) nm at different annealing temperature (RT, 423K and 523K). The characteristics of Cul films showed strong relation to the substrate temperature .The intensity of the peak increases markedly with the increase of substrate temperature, because the large exaction bending energy of Cul high energy in the short wavelength excitation photons cause more phonons to be emitted before luminescence occurs .

Conclusions:

The results of structure from the x-ray diffraction show that the Cul thin films deposit on glass substrate is Polycrystalline and cubic structure. Annealing process leads to improve in the crystallization. In addition, AFM confirmed that films prepared very well. UV-Visible transmittance, found that the transmittance decreases With increasing annealing temperature. The films have allowed direct energy gap, which decreases with increasing of annealing temperatures. Also refractive index decreases and real part dielectric constant with increasing temperature, while the ExtinctionCoefficient increases. Typical luminescence behavior with two emission peaks, Photoluminescence increase with annealing temperature.

References

- Grundmann M, Schein F L, Lorenz M, Böntgen T, Lenzner J, Wenckstern HV. A p-type transparent semiconductor, history, and novel applications. Phys. Status Solidi. 2013;210:1671–1703.
- Sirimanne P M, Rusop M, Shirata T; T Soga, Jimbo T. Mater Chem Phys. 2003;80: 461-465.
- PereraV P S, Tennakone K. Solar Energy Materials and Solar Cells .2003; 79 : 249-255.
- Rusop M, Shiratya T, Sirimanne PM, Soga T, Jimbo T, Umeno M. Study on the properties and charge generation in dye-sensitized n-TiO2/dye/p-Cul solid state photovoltaic solar cell. Appl Surf Sci. 2006; 252: 7389-7396.

Lee J H, Leem D S, Kim J J. Organic Electronics.2008;9: 805-808

- NurAmalinaMuhamada, MuhammadAtiqAzman, Mohamad RusopMahmoodb. Effect of the Precursor Solution Concentration of Cul Thin Film Deposited By Spin Coating Method. Advanced Materials Research.2012; 364: 417-421.
- Cheng C.H., Wang J., Du G.T., Shi S.H., Du Z.J., Fan Z.Q., Bian J.M., Wang M.S. Organic solar cells with remarkable enhanced efficiency by using a Cul buffer to control the molecular orientation and modify the anode. Appl. Phys. Lett. 2010;97:083305. doi: 10.1063/1.3483159.

EasonR. Pulsed Laser Deposition of Thin Films. John Wiley & Sons Publication.2007 ; 192

Robert Eason. Pulsed Laser Deposition of Thin Films. John Wiley & Sons, Inc, 2007 ; 193-194.

RAO M. Pulsed Laser Deposition- Ablation Mechanism and Applications .International Journal of Modern Physics,2013; 22 : 355–360.

- Mihai Stafe, Constantin Negutu, Adrian Ducariu and Niculae N. Puscas.A .Spectroscopic Study of the Ablation Plasma Produced on Er3+ -doped Ti: LiNBO3. U.P.B. Sci. Bull., Series A.2011. 73, 147.
- Charles Moditswe, Cosmas M. Muiva, Pearson Luhanga, Albert Juma "Effect of annealing temperature on structural and optoelectronic properties of γ-Cul thin films prepared by the thermal evaporation method" Ceramics International 43(6), 10.1016/j.ceramint.2017.01.026
- N. P. Klochko, K. S. Klepikova, V. R. Kopach, D. O. Zhadan, V. V. Starikov, D. S. Sofronov, I. V. Khrypunova, S. I. Petrushenko, S. V. Dukarov, V. M. Lyubov, "Solution-produced copper iodide thin films for photo sensor and for vertical thermoelectric Nano generator, which uses a spontaneous temperature gradient Journal volume 30, pages17514–17524(2019)