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Abstract 

The problem of serving the on-time client query of shortest path between two vertices in 

road network has always been solved using an algorithm that avoid reading all input of the 

large graph because of the limited capacity of memory and time. Such a method does not 

always give the realistic shortest path and cannot be used for all types of the shortest path 

problem that consists of vertex to vertex, all pairs and single-source shortest problems. The 

realistic shortest path is obtained only when all vertices are visited. The memory 

requirement and the speed of the computation are challenges that need to be considered. 

Paths in graphs, represented in terms of sets obtained from applying topology on the edges, 

are all identified in the undirected graph. Therefore, no edge is possibly distracted or left by 

searching. Such data of sets contains the realistic shortest path. We presented a framework 

that includes applying the edge topology on the undirected graph and the process of the 

finding the shortest path from a large data are presented and discussed. The provision of an 

immediate response to the client query is proposed within a simple framework that consists 

of the Internet webserver. The evaluation of the proposal, the topology with the framework, 

showed that it was successful and applicable and steered the researches towards finding the 

best and fastest service for the problems through the offline techniques of graph data 

manipulations at the webserver. 
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Introduction 

The determination of the shortest route in graphs has still been one of the problems 

that need to be solved with more efficient method. In graphs such as those for road network, 

GPS service is provided to drivers (clients) for their queries of the shortest path or the least-

duration arrival to arrive the destination. Searching and finding the shortest path between 

two points (or nodes) was always chosen to be solved by an algorithm that fans out the 

graph and implemented in the handheld GPS or mobile device. This scheme was proposed a 

few decades ago because of the limited capacity and slow processes of computations. 

Dijkstra algorithm  [1] is one of the basic algorithm that was used and modified to find the 

shortest path between two nodes. Such algorithms don’t need to read all nodes of the 

network but only those in the way between two nodes. Therefore, its technique is based on 

choosing the next node till it arrives the destination. Such a technique cannot ensure that 

the other next nodes are connected to the destination (cut-off) and when it is connected 

there is no guarantee whether the chosen path is exactly shortest. However the backtrack is 

a good technique to avoid the cut-off, it slows down the process. And, although more than 

one path was found and the shortest one was chosen, it is still no guarantee whether the 

shortest path was found or not. Since, in every step, one next (nearest) vertex out of others 

is chosen. This step leads to one path (the current one is being found by the algorithm) and 

leaves other paths. In the next steps, it is not certain whether the next nodes of the current 

path are shorter than the nodes of the other paths left because the comparison and the 

choice is based on only the next edge but not the whole path. This is why some modified the 

algorithm by using backtracks and trying other paths to be compared  [2–6]. In real road 

networks (large graphs), so many paths exist between two nodes when they are relatively 

apart. If the backtrack is fully extended to extract all possible node-node paths then the 

shortest is chosen using comparisons between them, it takes too long to finish and needs 

large memory that is not available in the recent devices. Therefore, the size of memory and 

the speed of processing were the two factors that should be optimized to serve the real-time 

node-node query.  

Since several decades, intensive research works have been developed to serve real-

time node-node queries. Dantzig (1960( developed an algorithm by saving the least distance 

between the nodes and not to revisit them again to decrease the computations  [2]. The 

probability theory based on people rumour was used to speed up the algorithm that finds 

all-pairs shortest paths  [7]. Some targeted decreasing the number of the visited nodes 

during the implementation of the algorithm using the landmarks on roads or using pre-

processing data that has the weight of every edge between every two nodes. So when the 

weight (length) of an edge is over the budget it is distracted. A* search algorithm (ATL) was 

proposed by  [8] to solve the point to point (P2P) problem with searching only a smaller 

portion of the graph than Dijkstra algorithm. ATL algorithm for finding P2P in a road 

network based on landmarks and with Euclidean bounds was proposed by  [8]. The memory 

needed and suggested for pre-processing used in this algorithm is limited and linearly 
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increasing with the graph size. However the landmarks helps to decrease the duration of the 

applying the algorithm, these landmarks are only on the main roads and not available 

everywhere especially inside the districts. The use of external memory such as a flash 

memory or sd-card for the pre-processing data is still slow when the graph is very large and 

the use of internal memory (built-in) is faster. Ding et al. (2008) proposed an algorithm to 

find the minimum time of travel from a point to another point in a large graph (road 

network) and discussed the storage model to suggest an easier implementation in a data 

system   [9]. Goldberg and Werneck (2005) studied the shortest path problem, from point to 

point, for road network using ALT algorithm. They also suggested an external memory, flash 

memory, for the graph data and the RAM in the PC pocked for the visited graphs of the 

current shortest problem  [10].  Ananthanarayanan  et al. 2017 proposed a multi-pass 

sequential localized search technique for the path planning to avoid the complexity of 

manipulators for the shortest path in real-time due to obstacles  [11]. So many researches, 

not mentioned here, targeted the improvement of the algorithm for the shortest problem and 

its derivations. In all works, the suggested algorithms are used to compensate the lack of 

memory and the low speed of computations. Therefore, the solution of the shortest path 

problem is not optimally solved as we mentioned above. The classic Dijkstra’s algorithm, 

which has been around for several decades, is incapable of handling on-line queries with 

acceptable response time for massive road networks  [12]. Even when an algorithm with 

some suggestions about the memory increment is succeeded to find the shortest path, it will 

not be applicable for the single-source shortest problem  [8]. All algorithms proposed and 

applied were not evaluated because their results cannot be compared with the real shortest 

that was not available. The realistic shortest path is found when only all paths and their 

weights are found and then the shortest is chosen. 

It is important to remember that the all pairs and node-node problems are essential 

similar  [13]. In fact, the node-node problem is also a part of the single-source problem that 

finds all paths between one node and all other nodes. When all paths between every two 

nodes (Node-node) in the graph are found the problem is called all-pairs shortest path. 

When all-pairs shortest problem is solved and stored as data the node-node problem is 

solved because it is a part of it and solution already exist in the data. But this problem was 

always avoided because it needs reading all data of the graph (nodes) whereas very small 

data is needed by the algorithm in the shortest path between only two nodes. Such a 

process takes too long to be applicable in the clients’ devices. Even the long duration is 

ignored the replication of the data of the graph is still a serious issue. Then a too large 

amount of memory is needed, which are not available in the mobiles or the GPS devices. 

Very recently, most works have also considered the problem using. A novel algorithm 

for the shortest path have been proposed. The length of a path is represented by an interval 

value that is represented by neutrosophic number, trapezoidal and triangular interval  [14]. 

A  new approach for the one-way road network using genetic algorithm has been adapted. It 

is based on searching out and determining appropriate directions  [15]. Zhang, Z and Li, M 
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(2023) have developed a model for a real traffic jam travel to estimate the travel time with 

least uncertainty within an approach of sophisticated route planning. The stochastic and 

time-varying model was based on empirical observations [16]. Delivery time issue has been 

considered by Maha G. et al. (2021) to propose a solution with providing time windows  [17]. 

The approach is based on a tabu search heuristic of several short paths withing 200 nodes 

and 580 arcs. A BCloud-IFog framework have been proposed by Liu Q. et al (2019) to 

include the usability and intelligence in large route planning for large network. From 

previous works, no recent works gave up the use of algorithms for the shortest path 

problems. Our proposal is to solve the problem without using the algorithms with perfect 

solutions. 

Update data broadcasting centrally at the road server has recently been one of the 

suggestions as approach for processing the queries of workload to the clients making the 

system more scalable and fault tolerant. It is assumed that the road server has much more 

powerful computation capability and larger memory size than the clients  [12]. But such a 

server with all equipment and installations for the broadcast to only road network is too 

expensive. Lately, the speed of the processing units and the memory has been increased 

million times more in the commercial devices and billions in the servers. Most companies 

follow their products to provide more services as maintenance and tracking the operations 

of their products. This is compatible with the future cloud computing  [18]. Besides, the 

edge topology on undirected graph describes the graph in terms of paths in details, so all 

possible edges and paths with their weights (lengths) are listed. Extracting the shortest path 

between any two vertices is just an operation of reading from the data base, which does not 

take long especially when it is performed on the computer of the webserver. 

Hence, the Internet webserver within a framework and the edge topology on graph 

were proposed to efficiently evaluate the solution of the vertex to vertex, all pairs and single-

source problems. The graph representation by edges topology is presented in section 2. The 

proposed framework and considering the issues related to the data construction by 

computations is shown in section 3.  

1. Topology on graph 

Some basic notions of graph theory  [6,19] and the definition of edges topology on 

graphs  [20,21] are presented with the proofs, but only theorems are given. Simple examples 

on simple graph are shown to explain the theorems. 

1.1 Preliminaries 

A graph   consists of a non-empty set      of nodes (or vertices), a set      of arcs (or 

edges), and an incidence function    that joins each edge of   with an unordered pair of 

nodes of  . Usually the graph is denoted by           . If a vertex   is not incident with 

any edge, then   is called isolated vertex. If         , then the edge   is called a loop or 

self-loop. A multiple edges are two or more edges that join the same pair of vertices. A graph 

which has no loops or multiple edges is called simple graph. A graph with multiple edges 

but no loops is allowed called multigraph. In a pseudograph, loops and multiple edges are 
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allowed. If each pair of distinct nodes in a graph   is connected by exactly one edge, then   

is called complete graph. If all vertices and edges of a graph   are in  , then   is a subgraph 

of  . A path is a finite sequence of distinct nodes and distinct arcs in which the sequence 

begins and ends with nodes and its consecutive elements are incident. A cycle   is a path 

that begins and ends at the same node.   

1.2 Definition of edges topology 

Edges topology on graphs was presented in Ref.  [20,21]. Suppose that            is 

a simple, multi or pseudograph without isolated vertex. Let    be the set of all edges incident 

with the vertex  . Then      is defined as          ⁄    . Since each edge is incident with at 

least one vertex, we have   ⋃      . For this reason     forms subbases for the topology     

on  , called edges topology of  . 

Example 1. Let            be a simple graph as in Figure 1 such that             ,          

             and            ,            ,            . 

We have    
        ,    

          and    
        . 

By taking finitely intersection the basis obtained is 

    ,     ,     ,        ,        ,        ,  . 

Then by taking all unions the topology can be written as                   

                                                . 

It is clear that, the edges topology of every simple graph is discrete. This means that 

the edges topology on simple graphs represents all edge induced subgraphs, i.e. each 

member of     with the exception of the empty set is an edge induced subgraph. In the last 

example, it has been shown that applying topology produces all possible subsets (or 

subsets, or subgraphs) and no path is left or ignored. In the next example, we will show 

later that some of these subsets are not valid paths and should be distracted. Identification 

of valid paths from the edges topology (subsets) is the next step and given in the next 

subsection.  

 

1.3 Identifications of paths and shortest path tree 

In the paths that are made from more than one edge, every two adjacent edges are 

connected and have a common vertex. Theorem 1 shows that   is a path between two 

distinct vertices in a simple graph  .     

Theorem 1. Let         be an edges topology on a simple connected graph with   

vertices. For all      , if   is a sequence of edges (each edge in the sequence is adjacent 

with the edges preceding and following) such that two distinct vertices       occur one 

time in   and any other vertices occur two times, then   is a path between   and  . 

The proof of the theorem is given in the appendix. In the next theorem, in a connected 

simple weighted graph, if we have the paths of minimum weights (shortest paths) between 

every two distinct vertices in  , then we can construct for each vertex in   the shortest-path 

v1 

e1 e3 

v3 v2 
e2 

Figure 1 A  simple graph of  three edges 
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tree which is a spanning tree rooted at a vertex   such that the path from   to any other 

vertex   in the tree is the path on minimum weight (shortest path) from   to   in  .  

Theorem 2. Let         be an edges topology on a simple connected weighted graph 

with   vertices. For all     if              are the paths of minimum weights (shortest 

paths) from   to all other vertices in the graph              respectively such that 

                , then                  and construct a shortest-path tree rooted at 

 . 

The last two theorems can be summarized in the following steps that determine all 

paths between any two distinct vertices and construct the shortest path-tree for any vertex 

from edges topology of a simple graph   with   vertices are shown below: 

Step1: Find the edges topology     for  . 

Step2: Examine each element       with length not greater than    1  as follows:  

a. Represent the edges in   in terms of the vertices incident with it.  

b. If   is a sequence of edges (each edge in the sequence is adjacent with the 

edges preceding and following) such that   and   occur one time in   and any other vertices 

occur two times, then   is a path between   and  . 

Step3: Calculate the weight of each path by taking the sum of the weights on its 

edges. 

Step4: Construct the shortest-path tree rooted at     by taking the union       

       such that              are paths of minimum weights (shortest paths) from   to all 

other vertices in the graph              respectively.  

 

Example 2. Let            be a simple graph as in Figure 2 such that      

              and                          .  

 

 

 

 

 

 

Firstly, we apply the steps for determining all paths between any two distinct vertices 

and construct the shortest path-tree for any vertex from edges topology of the graph   in 

Figure 2. 

Step1: Since   is a simple graph, then     is discrete. Therefore,    =  ,  ,     ,     , 

    ,     ,     ,     ,        ,        ,        ,        ,        ,         ,        ,        ,        ,        , 

       ,        ,        ,        ,        ,           ,           ,           ,           ,           , 

          ,           ,           ,           ,           ,           ,           ,           ,           , 

 
 e1 

e3 v3 V4 

e2 

Figure 2 

e4 

V2 V1 

e5 e6 
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          ,           ,           ,           ,           ,           ,              ,              , 

             ,              ,              ,              ,              ,              ,              , 

             ,              ,              ,              ,              ,              ,                 , 

                ,                 ,                 ,                 ,                 }. 

Step2:  From   we have,            ,            ,            ,            , 

           , and            . By theorem 2,        is a path of length not greater than 

three between two distinct vertices       if   is a sequence of edges such that   and   

occur one time in   and any other vertices occur two times. 

            is a path between    and   ,                     is a path between    and 

  .            =                  is a path between    and   . 

           =                  the vertices    and    occur one time and the edges need to 

rearrange, we put first an edge contain a vertex occur one time. After that the edges 

arranged in a sequence such that each edge in the sequence is adjacent with the edges 

preceding and following in the sequence. then                  =                  is a path 

between    and   . 

           =                  is not a path between two distinct vertices since every 

vertex occurring twice.    

           =                  is not a path since the edge      is not adjacent with the 

preceding edge also the vertex    occur three times.   

By theorem 2, we can determine that       is a path between two distinct vertices   

and   by deleting all vertices that repeated twice and the remaining vertices will be   and   

in different edges such that any subset of   is not a path between   and  . Otherwise,   is 

not a path between   and  . 

          =                 is not a path. 

          =                 is a path between    and   . After testing all elements       

of length not greater than three, all paths between distinct vertices are shown in table 1: 

Table 1. All paths between distinct vertices of the simple graph in Figure 2. 
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Step 3: In any simple weighted graph  , the weight of any path is the sum of the 

weights on its edges and denoted by     . Consider the simple graph in example 2. Suppose 

that       5,       4,       6,       2,       9,       8.  Then the weights of all 

paths are shown in Table 2: 

Table 2. The weights of all paths in table 1. 

                                                      

      5 

      13 

      1  

      12 

      23 

      9 

      9 

      8 

      19 

       14 

       2 

       13 

       15 

       15 

       21 

       4 

       14 

       14 

       13 

       19 

       8 

       7 

       1  

       2  

       15 

       6 

       12 

       11 

       11 

       22 

 

The paths                   and     represent the shortest paths between distinct 

vertices. In this way we can choose the minimum or maximum weight for the paths 

depending on the problem.  

Step 4:     By theorem 2 and step 3, the shortest path tree rooted at each vertex are:  

1. The shortest paths from    to the vertices   ,   , and    are         , 

            and           respectively. Then by theorem 2 the union       

                is the shortest-path tree rooted at   . 

2. The shortest paths from    to the vertices   ,   , and    are         , 

          and              respectively. Then by theorem 2 the union        

               is the shortest-path tree rooted at   . 

3. The shortest paths from    to the vertices   ,   , and    are            , 

          and           respectively. Then by theorem 2 the union        

               is the shortest-path tree rooted at   . 

4. The shortest paths from    to the vertices   ,   , and    are          , 

             and           respectively. Then by theorem 2 the union         

               is the shortest-path tree rooted at   . 

When the edges topology for a given vertices of real network such as road network is 

found in terms of subsets, investigation is not only whether each subset is a path or not but 

it should be whether a real path in the original network or not. 

 

2. Framework of the shortest route problem 

The framework proposed for the problem is divided into two: offline and online as 

shown in Figure 3. The offline is only in the webserver and is supposed be finished before 

starting the online one. In the online, the webserver provides the shortest path service to 

clients. The session of the offline is expected so much longer than the online session 
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because during the offline, in the webserver, large amount of data would be manipulated 

and created. It is expected that the webserver that can quickly and successfully finish the 

offline session, will provide the fastest and best solution ever to the online query. 

 

 

 

 

 

 

In offline session as shown in Figure 4, the webserver inputs the data of the network: 

vertices and distances between them, and apply the steps shown above in the previous 

subsection. This is like the preprocessing to initiate new data that contains all vertices and 

edges. The data produced is used as an input for the processing the graph. From the 

processing of data files new data files are initiated to be used later for the online query.  

 

 

 

 

 

When the client’s device, already connected to the webserver by the Internet, has a 

query of a shortest path between two vertices, it sends the query represented by two 

vertices: starting and destination, to the webserver as shown in Figure 5. The webserver will 

access the data that is already made to read the path that has these two ends with shortest 

path (least weight) and send it to the client. When the client’s device receives the shortest 

path in a particular code, a search in client’s device data is performed to extract the edges 

that client should orderly follow to reach the destination. The two sides, webserver and 

client, are supposed to be capable to accomplish the solution of the problem on time. For 

the webserver side, some issues such as the memory, the speed and the users interconnect 

should be considered in the framework. How the webserver can perform the topology and 

deals with huge graphs with large data and construct larger data are discussed and 

evaluated.  

 

Offline 

 Webserver 

Online 

Webserver-clients 

Figure 3 Two session framework for the shortest route problem. 

Figure 4 Offline session schemes in webserver for the shortest route problem. 

Graph data input Preprocessing Processing 
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3. Webserver side 

The webserver has the responsibility to provide quick service to the clients. The 

performance of the webserver computers is higher than the clients’. These computers have 

very fast CPUs and very large RAM however the large graphs may have millions of vertices 

and the database initiated in the webserver computer are so much larger than the input 

data of the graphs. The fast implementation of the computer is one of the properties that 

support this framework because webserver presents online response during obtaining the 

shortest path from the database for a query. Furthermore, the big rate of users’ queries 

received by the webserver is one of the issues that should be considered. In this scheme, 

every point, listed below, has issues that should be considered and discussed in more 

details, 

A. Input of the graph data:  

B. Preprocessing of the input data 

C. Processing of graph paths 

D. Implementation of data access 

E. Webserver-users connection. 

It is important to know that the input of the graph data, preprocessing the input data 

and the processing of data initiation are previously done off-line before the webserver 

receives any query. Hence, the implementation of data access and the webserver-users 

connection are the online processes for the client query.  

 

Figure 5 Online session scheme between server and the webserver for the shortest 

route problem (see the text for more details). 

client device webserver 

Query 

Answer 
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A. Input of the graph data: The input of the graph data is not a big issue as a size of 

memory and a speed of implementation when it is compared to the next two stages: the 

preprocessing and the processing. The two stages totally depend on it, so, any change in 

input leads to so many changes in the next two. Such changes are related to long and short-

term update due to initiation of new nodes or edges and deletion, interdiction or some 

constraints on roads.  In the present work we conducted a general framework that solves 

the shortest problem for a very large graph, which finds the shortest path in the offline 

webserver computers.  Updates and forbidden roads can be included in different schemes 

and it is out of the scope of the current work. In general, the size of the graph is the issue 

that we consider here. The roads exit where people populate. All maps of countries are 

divided into provinces that are divided into cities. A few high ways connect the provinces 

and more between the cities. The vertices inside the cities are most dense. This view leads to 

consider the huge graph as made up from clustered graphs, and then each cluster could be 

considered a graph of a province or city road network. Hence, the clusters can be considered 

as big vertices with highway between them in a high-scale network. Therefore the high-scale 

road network is smaller than the graph of the city network. Within this view, the shortest 

route between two vertices on different cities can be considered as three shortest paths: 

inside the first city (from a vertex to another on its border), first city to the second city 

(within the high-scale network) and from border of the second city to the vertex inside it. 

From this view, the size of the graph could be considered as only a cluster and the biggest 

cluster is the road network of a city. The size of graph that should be considered for 

studying the graph problems of road network should not be more than that of a city. 

Therefore, we may not need to consider a graph made up of 30 million vertices for North 

America but a graph of only a city  [10]. Kim et al. (2014) chose two real road networks, 

Oldenburg (6015 nodes and 7035 edges) in Germany, and Singapore (11414 nodes and 

15641 edges) to test their proposed algorithm  [22]. The largest network chosen to test an 

algorithm of the shortest path problem was made from 2500 nodes with a ratio 

edges/nodes=15 [23].  A 11640 nodes random graph was generated to represent a large 

graph  [24]. In USA some states have so much more nodes and edges as shown in Table 3 

(taken from  [25]). Florida has the largest number of nodes, about one million, and edges, 3 

million. The size of the files that contain vertices, distances of the arcs of Florida was about 

50 MB after downloaded and decompressed.  

 

Table 3 Real examples of graph for some cities in USA. 

Name Description # nodes # arcs 

FLA Florida 1,070,376 2,712,798 

COL Colorado 435,666 1,057,066 

BAY 
San Francisco 

Bay Area 
321,270 800,172 

NY New York City 264,346 733,846 
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B.  Preprocessing of the input data 

In this stage the input data of the graph is read and maybe manipulated to be ready 

for the next stage processing. The manipulations could be different for different processes 

based on different algorithm. In the present work and for a large graph, such as that of 3 

million edges, the input data is performed and rewritten in terms of edge number, the 

weight and vertices. In other words, it is to provide the data in a suitable format for the 

processing stage. The file of data obtained is a necessary reference for the webserver and the 

client for linking the edges to their vertices. However the size of the data is not a serious 

problem because of the capability of the webserver computers, the data could be divided 

into a certain number of files according to a purpose related to speed up the processing or to 

parallel manipulations by more than processers. Müller et al. (2006) used Message Passing 

Interface technique of implementation to handle huge input graphs that can even handle 

graphs as large as the road map graph of Western Europe  [26]. In this implementation, the 

run can be on parallel architectures, e.g., on a massively parallel shared-memory machine.  

C. Processing the graph paths 

In processing, all edges with their weights (lengths) are input to apply steps 1,2 and 3 

to construct all real possible paths. Each path is a record that contains identification code, 

weight, and edges. Such data will be replicated because so many paths have common edges. 

In the topology of edges, so many subsets are produced but not all of them are paths, and it 

builds the subsets according to the combination, for instance, it extracts all possible 

subsets made from two different elements chosen from a set of n elements. For Florida road 

network of 3 million edges, the subsets of edges that are produced by the edges topology are 

more than the real paths. Using the formula 2n, the number of these subsets can be 

calculated as follows 

For   3         

          e     2        8   1     

This huge number cannot be used in computers and represents a floating point and if 

we assume that each subset is a few bytes then there is no a memory has this capacity. If 

we think about the implementation and assume that the CPU finishes one task with a speed 

equals to its frequency about 3 MHz (three million operations per second), it takes about 

10594 sec (~10585 centuries). The difference between one and three millions has no matter 

with the big power. Sedgewick (2003) mentioned that either the computers are developed to 

have speed of 200,000 times faster, the factorial-time algorithm applied to one million 

vertices  takes centruies to fully manupulate the graph  [27]. Since we don’t concern about 

the algorithm of online processing but with offline processing, finding a method reduces the 

computations is our target. It has been clear that applying the topology for a huge number 

of edges is impossible but we discuss how this will be reduced by modifying the edge 

topology to less number. The real paths needed by the clients are not made from 3 million 

edges, hundred thousand, thousand or hundred edges. The paths made from a few edges 
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can be calculated using the formula for calculating the number of different combination 

from choosing r edges out of n edges    
            ⁄ . 

No. of two-edges subsets out of one million  5   1    

No. of ten-edges subsets out of one million   1    

So, the number of subsets increases when the number of elements of the subset 

increases. Practically real paths are made from a small number of edges, therefore only 

subsets with small number of element are important. If we assume that the maximum 

number of edges in real paths is 25, the total subsets  

- The sum of subsets with edges; 2-25   1     

- The sum of subsets with edges; 2-50   1     

In comparison with 1    , the reduction in the number of subsets is so much when the 

paths with limited number of edges are considered. But the number of subsets is still too 

large to be manipulated in computers either those in webserver. The different combinations 

used in the topology to choose any r elements from n elements is randomly occurs with 

considering whether the edges are connected or not. This is why the number of two-edges 

subsets  5   1    was too large. There is no doubt that an edge in a district is not connected 

(adjacent) with another edge in another district located a way or at other side from the city. 

The vertices are usually connected at maximum to four vertices. In other words, an edge is 

connected at maximum to 6 edges as shown in the Figure 3. In the topology, for each edge 

(1000,000 -1), subsets are constructed while there are only 6 edges, so for our example of 

one million edges, 

The no. of paths made from two adjacent edges   1   6 

When the path, made from two adjacent edges, is considered to be extended to any 

possible next edges from its two ends, there are also only 6 edges (see Figure 3), so 

The no. of paths made from three adjacent edges   1   6  6  1   6  

By similar way, when every path of two edges are considered to be connected to one 

edge from its tips,  

The no. of paths made from four  1   6  6    1   6  

In general, the number of paths N made from r edges in a graph made from n edges 

can be written as 

       6                       (1) 

If we consider all paths that have r = 1, 2, 3, 4,…, and k edges, the total number of 

paths is the sum of paths given in Eq. (1), 

   ∑   6                   
     (2) 

This is a geometric series and the sum can be written as 

   
        

   
                (3) 
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Now, calculating the total possible paths made from edges from 2 to 25in one million 

edges graph  is  

    
1    1  6   

1  6
 1    

And,  

    
1    1  6   

1  6
 1    

In summary, from the 10600 subsets only about 1044 are valid. This reduction is so big 

and indicates the possibility of dealing with the large graphs with offline processing. When a 

graph of a few thousand edges such as Oldenburg (7035 edges) in Germany is considered, 

the sum     1    and                1    which are not so much different from the graph of 

million edges. Equation 3 can be written for paths made from 25 and 50 edges as follows: 

      1    (4) 

      1    (5) 

The last two equations show that the large number is mainly due to the long paths. If 

there is a method or technique (algorithm) that can obtain the long paths from short path, 

the number of the path will reduced so much. In addition, if we consider the edge a in 

Figure 1 again and assume that it is surrounded by 5 edges instead of 6, 1019 paths in Eq.(4) 

and 1038 paths in Eq.(5) will be subtracted from the total sum of paths. Therefore, the ratio 

of the edges to the vertices has a large influence on the determination of the exact number 

of paths and consequently reduces remarkably the number of paths.  

 

 

 

 

 

 

 

 

The number of the paths obtained above is still so much larger than the real however 

it can be reduced more in future research work. Thus, a graph of Oldenburg city (7035 

edges) with the sum      1    is considered as a primary evaluation for the current 

proposal. The processing creates the data that contains all paths. Other sets of data can be 

created for vertex-vertex, all pairs or single-source paths to be ready for any query. The way 

the data are saved or divided into files is subjected to many schemes depending on the 

webserver computers performance and the services offered. Hence, the data manipulation in 

the processing can be viewed in three points; the capacity of storage, capacity of data access 

Figure 3 There are 6 adjacent edges around the edge a (on left) and there are also 

only 6 edges adjacent to the two ends of the path made from the two edges a and b 

(on right) when it is assumed that the maximum edges connected to a vertex is four. 
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(RAM) and the duration of the implementations. The three points are the main challenges 

that face the offline processing of graph data. 

The capacity of storage in the webserver is not a big issue since the computers 

already have a very large size of hard drive disks and the data can be distributed over more 

than one computer. So many servers in the globally provide services that deal with data so 

much larger than the data for 1021 paths. 

The duration of implementation is one of the issues that always needed to be 

shorter. Although the implementation is offline and has no effect on the duration of the 

client service, the large data and the large duration of processing are still important because 

of the vast amount of data and the update. For the data such as that of 1021 paths, the 

computer that have a CPU of about 8 GHz, it can roughly finish only about 109 calculations 

in second. In one year (107 second), it can finish 1016 paths which are still so slow and the 

webserver with such a speed cannot finish the calculation of obtaining the paths in many 

years either the real path is less than this number. For such an issue even the parallel 

computers can shorten the duration of this process. Here we suggest that supercomputers 

can do this job then the data obtain is saved in the webserver computers. These computer, 

such as the “Jaguar Cray XT5 at Oak Ridge National Laboratory and “The BlueGene/P 

Intrepid system at Argonne National Laboratory, had over 1 × 105 cores and reached 

petaflop nominal speeds  [28–30]. The petascale computers that can perform about 1015 

calculation per second can finish this task in one year. The exascale supercomputer  [30–35] 

that can perform about 1018 operations per second can finish this task in a few days. 

The data yielded from the processing can be arranged in a way so that updating the 

input data don’t need to redo the processing again and construct new data. The deleted and 

added edges can be individually manipulated and saved in additional data files that can be 

permanently or temporarily used.   

The data access capacity is the most important issue that relates to manipulate 

very large data. However increasing the data access is always compatible to the speed of 

CPU to execute and finish a task in-time, the access memory of the webserver can be 

increased even the time taken to finish the processing is long because this is performed 

offline. Lately, Citrix offered a server, called Xenserver, has the ability to access to RAM 

memory with 128GB  [36,37]. Such a server with fast with this ability can access with large 

memory but slower. 

D. Implementation of data access 

This implementation is different from that shown above for the offline processing. It is 

online implementation in which the webserver accessing the data of the paths identified by 

the starting and the destination vertices. As mentioned before such data of paths are so 

large and can be partitioned into different parts to be shared by different computers. In 

Xenserver, offered by Citrix, the speed of accessing 128 GB RAM is encouraging to let the 

server performs such a task.   

http://www.minarjournal.com/


 
Volume 5, Issue 2, June 2023 

 

 

175  

 

www.minarjournal.com 

 

E. Webserver-users connection 

Since the webserver provides the user the service of the query, it is expected that the 

large number of users that instantly connect the server may cause delay in the service. This 

issue is actually solved by using the virtual servers that can be accessed through the 

interconnect networks. In the interconnected networks of cloud computing, it allows share 

information between the computer resources, which are already accessed by a group of user 

by the Internet. The computers are altogether hosted virtually in a centralized 

repository  [38]. 

 

4.  Conclusion 

The framework and the topology, proposed for the shortest path problem, have been 

evaluated. The steps needed to apply the edges topology successfully finds the realistic 

shortest path but for small graph. The large graph data still has many challenges such as 

the storage, the data access RAM and the duration of implementation but the proposed 

framework that consists of the offline webserver and the online webserver-client, totally 

diminishes these challenges and partially that part of the processing the graph data to 

obtain the real paths. Hence, use of a supercomputer was suggested as temporary solution 

till a progress of future researches will find the less realistic number of paths or a method of 

computation that can overcome the too large data. The framework within the edges topology, 

compatible with the future cloud computing and supercomputers, presents best and fastest 

solution of the shortest path ever. 
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