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Abstract 

 

The traditional algorithms (Prim) or (Kruskal) are able to obtain A minimum spanning tree (MST) in 

undirected graph easily. But many algorithms have been proposed for the purpose of obtaining spanning 

trees in undirected graph, these algorithms are considering the complexities of time and space. Some 

algorithms are generating spanning trees by using some basic cuts or circuits. In this process, the tree's cost 

is not considered.  In this paper we will describe an algorithm for generating spanning trees in a graph of 

increasing cost, so we will get many possibilities, such as determining the k-th lowest spanning tree. The 

lowest spanning tree meets some additional constraints that may be found.  We will discuss Murty's 

algorithm in this paper, which can find all solutions to assignment problem of increasing cost, and also 

discuss complexities of time and space. 

Keywords: Performance Analysis, Computational Complexity, Graph, Minimum Spanning Trees.  
 
 

 
 
 
 
 
 

                                                             
1 Dr.,  Mustansiriya University, Iraq, nadiahasan@uomustansiriyah.edu.iq 
 
 

http://www.minarjournal.com/
mailto:nadiahasan@uomustansiriyah.edu.iq


Minar Journal, 2020, Volume 2, Issue 3                                                                  | 36 

 

 
  

September 2020, Volume 2, Issue 3 
 p. 35-45 

 

 
 

1. Introduction 
Undirected graph (G) can be characterized as a group of (V,E), while (V) as a gathering of vertices and 

(E) as a gathering of edges. each two vertices are associated by edge , i.e.        |        The 

undirected weighted chart is containing a component of weighting:        , that allocates out a weight for 

edges. At that point weight of edge can be likewise called as cost or distance.[1] The tree is created from 

sub-chart through G that has no circuits. Therefore, there is just one course from every vertex to another. in 

this way, the crossing tree is made out of all vertices. Also the (MST) of undirected, weighted chart (G) is the 

tree that having the insignificant entirety of edges' loads. There are numerous calculations that can locate a  

(MST) (M, for example, (Kruskal) and (Prim) calculations[2]. 

Kruskal's calculation: The accompanying advance must be rehashed unto the gathering M arrives at n-1 

edges (initially M is unfilled). at that point we need to add the briefest edge to M, with thinking about that the 

edge doesn't draw up a circuit with different edges in M. 

Prim’s calculation: The accompanying advance must be rehashed unto the gathering M arrives at n-1 edges 

(initially M is emptied).[3] The most limited edge between a vertex in M and a vertex outside M ought to be 

Added to M (initially pick an edge with least length). 

 

The two above calculations are diverse in the criticalness, in light of the fact that (Prim) calculation develops 

a tree unto it turns into the MST, while (Kruskal) calculation develops a gathering of trees unto this gathering 

is decreased to one tree as MST[4]. 

The spanning trees can be shown to by an assortment of n-1 edges. Furthermore, the edge can be shown to 
by unordered pair of vertices. 
 

                          
 
The character, (A) is symbolizes to all spreading over trees in the diagram G. 

There are numerous calculations intended to create all spreading over trees in a diagram, for example, 

(Matsui, 1993; Minty, 1965; Shioura& Tamura, 1995; [5] Gabow& Myers, 1978; [6] Kapoor& Ramesh, 1995; 

Read &Tarjan, 1975; [7] Kapoor& Ramesh, 2000; Matsui, 1997). The complexities of good reality are the 

significant worries of these calculations. numerous calculations are spanning trees by utilizing some basic 

cuts or circuit, yet nobody considers the expense of tree during creating spanning trees.  

Some calculations can produce all spanning trees without weights , for example, (Minty , 1965; Read& Tarjan, 

1975),[8] so  can be apply it on our concern by categoriation the trees relying upon expanding weight, in the 

wake of creating them. As this procedure can creates countless trees (for the most part in complete 

diagrams), along these lines this decision is prohibited for pragmatic purposes[9]. 

 

II   Creating Spanning Trees arranged by Increasing Cost 

Assuming that c(si), is the cost allocated to spanning tree,  si and i is to the position of si, at that point If all 

spanning trees are arranged agreeing expanding cost[10].  

Subsequently take on the take on that c(si) ≤ c(sj) on the off chance that i < j. The arrangement s1, s2, ... are 

to the arranging of spanning trees arranged by expanding cost. 

By the following equation: 

 

                                                                                           
 
know the a  portion (P) is characterized as non-void sub-bunch from all spanning trees (H) in the diagram 
(G). That is, it can be said that P is the gathering of spanning trees that contain all of included edges 
[symbolized as (i1, j1), … , (ir, jr)], and not contain any of avoided edges [symbolized as (m1, p1), … , (ml, 
p1)). Open edges are known as neither included nor excluded edges in segment. Will be show to the 
segment P as in the following equation: 
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The strip above shows that (m1, p1), … , (ml, pl) are prohibited edges. These edges, lead to make a few 

allotments not have any spanning trees. This is known as the case (w) in the diagram G, when avoided 
edges are expelled or separated from the segment. So we designate the segments that are not containing 
any crossing trees as (vacant allotments)[11].  
It ought to be referenced that (H) which shows to the gathering of all spanning trees, is likewise a segment, 
however the entirety of its edges are open [12]. Minimum Spanning Tree  is characterized as a component of 
P which is made out of a spanning tree with insignificant expense and contains every included edge as it 

were. since each spanning tree is containing the edges (i1, j1), … , (ir, jr), in this manner the base spanning 
tree can be found via looking through n-r-1 from (open edges). So as to ensure that every single required 
edge are incorporated into a base spanning tree, they can be included before every single other edge. 
Likewise to ensure that nobody from rejected edges is in minimum spanning tree, they can be briefly 
allocated to boundless expense.  
 

The strategy for framing partitions, ensures that the sets of included edges isn't containing any circuits. At 

that point Kruskal's calculation can be begun from this partial spanning tree and keep including edges.  

Since the sets of included edges may not create a tree, at that point (Prim) calculation ought to be balanced 

by the accompanying strategy: 

Include the most limited edge between a vertex inside (M) and other vertex, to M, under specification that no 

circuit is structure with edges of M[13]. The balanced calculation permits edges to interface two disengaged 

parts in spanning tree, and doesn't permit framing circuits in M.  

s(P) demonstrates to the MST in partition  P. What's more, c[s(P)] is its expense. 

Part P by the minimum spanning tree is the topic of segmentation is the core of the algorithm proposed in 

this research paper[14]. When minimum spanning tree defines a section, that section can be divided into a 

group of resulting sections in a way that includes notifications such as the empty group is resulted through 

intersection of two partitions,  the minimum spanning tree of main partition is not a component of any  

resulted partitions, in addition to the major partition is equal to the unifying of resulted partitions after 

subtracting its minimum spanning tree. 

For more explanation, can follow the rule below:  Assume that the MST in P is:  

                                                 

Whereas (t1,v1),…,(tn-r-1,vn-r-1) are dissimilar from (m1,p1),…,(m1, p1). So P can be defined as the 

unification of single group {s(P)} and the partitions P1,…,Pn-r-1, that are not  connected, where: 

                                                    

                                                              

                                                                      

… 

                                                                                             

 

It can be noted that the partitions P1, …, Pn-r-1 are reciprocally disconnected by noting that any spanning 

tree(ST) in P either includes (t1, v1) or does not (when it is an element of P1). If it does, it either includes (t2, 

v2) or does not (when it is an element of P2). Taking up such this and noting that the only (ST) is containing 

the edges (i1, j1), …, (ir, jr), (t1, v1), …, (tn-r-1, vn-r-1) is s(P), can find that: 

         ⋃   

     

   

 

Each ST in partitions P1 to Pn-r-1 includes (i1,j1),…,(ir,jr) and each spanning tree does not include 

(m1,p1),…,( m1,p1). 

Phase k in the counting process indicates to the stage when s1,...,sk are specified . In this stage, the list that 
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contains a group of partitions M1,…,Me with the characteristics below: 

1. M1, …, Me are reciprocally disconnected, 

2. Every partitions in the list does not contain any spanning trees that was previously generated (su, u = 

1, ..., k). 

3. The unification of all partitions in the list is the set of all spanning trees that are not generated yet.  

Through these characteristics, can say that[15]:   

  ⋃ 

 

   

    ⋃  

 

   

 

Also through determination a list for stage k, note that the smallest ST (k-th) is equal to s(Md), as Md is any 
partition in the list that   
 

 [     ]     
       

  [     ]  

 

III  Design of Algorithm for organizing ST arranged by expanding cost  

At the point when the graph G contains (n) vertices, the calculation proceeds in stages, until creating the 

littlest ST (k-th) in stage k. 
In the first stage: Stage 0 is determined as equal to the partition H.  then find out an minimum spanning tree  
for H (or for G). As in the following:  
 

                            
 
Partitions M1, …, Mn-1, that are defined as follow, will be created by (MST) of  partition H. 

           

                    

                            

                                                                                     …… 

     {                    (         )}  

Then{M1,…,Mn-1is forming a list for stage1, so the partitions which have no spanning trees, may be taken 

away from the list. 

In the second stage: stage (k), Since the list of stage k1 is consisted from the partitions L1,…,Lt, we count up 

(MST): (L1),…,s(Lt), of each partition in this list, also we count up  the costs c[s(L1)],…,c[s(Lt)] for each  ST. 

Then, smallest ST (k-th), is the tree which has lowest cost: 

   {     ⌊ [     ]     
      

 [ (  )]}  

(Li) represents the partition that have smallest ST of all spanning trees that are not produced yet. A list for 

stage k is resulted by removing (LI) from stage (k-1) list, and puting it in the partitions that are created 

through segmentation (Li) according s(Li). and   removing blank partitions from the list. Also solving joints 

through choosing one partition randomly from the list and disregard others[16],[5]. 

. 

The final stage will take the example:  In this example will be explain the steps of algorithm  for sorting all ST 

for increasing cost. 

 Take into consideration that the graph (G), has five vertices (H, I, J, K, L). Any ST in (G) will be composed of 

four edges. 
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Fig. 1 Example graph (G) 

The first step is to define the MST in partition (H). Then (MST) in (G) is equal to s1={(H, I), (I, J), (J, K), (K, 

L)} and c[s1] = 25 (see Fig. 1). 

Now, G is subdivided through s1, in order to obtain four partitions, P1, …, P4,  and form a list for stage 1:  

   (   )  

         (   )  

               (   )  

                     (   )  

Diagrammatically, can represent the partitions as in Figure (2) (a dotted line represents an excluded edge, 

and bold line represents an included edge).  

 

 

 

 

                                              

 

The next step is to count up (MST) for each partition in the list. Because P1 is disconnected, therefore it does 

not have (MST). The MST of P2 to P4 are: 

                                

                                

                                

Their costs are:       [     ]       ,     [     ]        ,      [     ]     

because P3 has the (MST) with lowest cost: 

                                    

Through subdividing (P3) according its MST s(P3) , will be gain the partitions (P31) and (P32).  
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                 (   ) (   )  

                       (   ) (   ) 

Diagrammatically, these partitions are represented in Figure3. 

 

 

 

 

 

 

The list of stage 2, is composed of {P2, P31, P4}. (P32) is removed from the list because it is disconnected. 

Then the MST for (P31) is: 

                                 

  With cost      [      ]     

The list for stage 2 holds two partitions (P2 and P31) that contain a minimum spanning tree with minimum 

cost. links such this one can be solved by choosing any partition to be subdivided in next stage. By taking up 

the same steps, eight spanning trees will be gained with costs range from 25 to 31[17].  

 

IV   Implementation of the Algorithm on a computer 

So as to play run out this calculation on PC, need to sort the vertexes in the list of present stage in memory. 

Can be shown to the partition concurring its included and barred edges. So can be represent to the particular 

diagram utilizing three courses of action, by represent to the head, tail and weight of the edge. successively.  

Furthermore, the parcel can be partition by two techniques. The first should be possible through assurance of 

the head and tail of included and rejected edges. The second should be possible through decide sort of each 

edge in the diagram, on the off chance that it is incorporated, prohibited or open. At that point the rundown of 

allotments can be acquired by utilizing a linked list. 

The potential structure of the program that producing all ST arranged by expanding cost is:  

Create ST orderly of growing cost using algorithm1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subdividing subroutine adds partitions to the list after inspection if they are linked and computing their (MST). 

The major disadvantage  of this method is that either have to hold (MST) of the partition in the list 

(squandering memory) or recalculate it when the partition is recovered from the list (squandering time)[18]. 
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So, the major advantage of this method is that can be keep arranged list of partitions instead of none-

arranged one, and it easy to recover smallest partition. A possible program for the subdividing subroutine is:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V   Complexities with Space and Time 

|E| represents the number of edges, |V| represents the number of vertices, and N represents  the number of 

(ST) in specific graph (G). A number of algorithms to generate all (ST) gain good time complexity through 

output (ST) in a specific arrangement, so can be use short notation format. And can be generate (ST) 

through interchange one edge from the previous (ST) in generation process[19].  

 By this method, can be expand the short notation format when the first SP is formed as output, and others 

are limited to the interchanged twin of edges. 

Because no such arrangement like this is gained through this algorithm, therefore need O(N.|V|) area  in 

order to generate all ST. Since all nodes in the list are alternately limited, the number of spanning trees 

imposes maximum limit on the number of partitions in the list, and the list of partitions cannot be bigger than 

the number of spanning trees, thus it includes a maximum of N partitions.  So the partition can be delinated 

according the situation of  its edges (open, included, or excluded). Therefore, the extent of each node is 

O(|E|). and the complexity's area in the partition list is O(N.|E|).  In most cases, only a small part of area is 

needed at any moment. 

The time complexity of this algorithm can be counted up depending on counting up the time complexity in 

algorithms of generating ST. The way to generate a spanning tree by (Kruskal) algorithm is O(|E|log |E|).  

In the following statements, suppose that the partition's list is constantly preserved arranged. In this case, 

can be retrieve an element from the list in persistent time. Also can put an item into the list according 

required O(N) operations, because the maximum extent of the list is equal to the maximum number of 

partitions N. therefore Input and output activities will be ignored. Can implement many steps in the algorithm 

in steady time. such as inspection if the partition is empty or not (if connected), because this information is 

obtainable from the (MST) algorithm. The master loop in the algorithm can be implemented (N) times, 

therefore, the step (PARTITION) can be implemented (N) times. Calculate Minimum Spanning tree (MST) 

(P1); is O(|E|log |E|) and Add to List is O(N). The algorithm has time complexity O(N.|E|log .|E| + N2).   

The complexities of time and space in our algorithm are worse than  other algorithms. The algorithms which 

were written by mathmaticians [Gabow & Meyers (1978), Matsui (1993) and Shioura & Tamura (1995)], have 

ability to generate all ST of a graph in O(|V|.|E|) space and O(N.|V|   |V|   |E|) time. However, the aim of our 

algorithm is not generating all spanning trees, but to stop generating when it finds a ST that comply with 

some additional restrictions.  This is leading to generate a small part of total number of ST.  

 

 

if (i) not contained in P and not  eliminate from P then 

 (  contained  

 Connected    

addition P1 to List;  

P1 equal  P2; 
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VI   Uses of Minimum Spanning Tree Problems 
 Possible applications can be found in the group of minimum spanning tree problems with additional 
restrictions, the algorithm in this paper is to generate spanning trees in order of increasing cost and inspect if 
it is complying with additional restrictions. (Murty) algorithm was designed for sorting assignments according 

increasing cost, and it was used by (Panayiotopoulos, 1982) in comparable manner to generate an optimal 
solution in the issue of (Touring Salesman)[20]. 
In some issues, may be need to find the largest ST which complies with extra restrictions. So the algorithm 

can be modified in order to implement this task. For example, the two algorithms (Kruskal’s) and (Prim’s) can 

be modified to find maximum ST instead of the minimum.  Also, the algorithm of generating spanning trees in 

order of increasing cost can be modified to generate spanning trees in order of decreasing cost[21]. 

 

VII   Implementation and Experimental Results 

In Computers and Software Engineering, a chart is a sort of data structure, explicitly an abstract data type 

(ADT) that comprises of a lot of vertexes and a lot of edges that build up connections (associations) between 

the nodes. This Section Presents of the implementation and the results of kruskals algorithm in C++ to find 

Minimum Spanning tree with Code-Blocks, in a given graph, the explanation MST as shown in Figures (4), 

(5) and (6).  
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Fig.7 Results of kruskals algorithm in C++ to find Minimum Spanning tree with Code-Blocks 
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VIII   Conclusion 
1. In this research paper, have been developed an algorithm to arrange all spanning trees in specific graph 
in order of increasing cost. so this algorithm depended on an algorithm which has been developed by the 
mathematician (Murty) for arranging assignments in order of increasing cost.  

2. Space and time complexities are discussed briefly. And gave some instructions to execute suggested 
algorithm on a computer.  
3. Ultimately, have been explained some possible applications of the algorithm.  All these applications can 
be classified as minimum spanning tree problems with extra restrictions. 
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