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Abstract: 

Data modelling- based untargeted metabolomic researches is one of the best approaches 

which can be used to compare among biological fluid samples to provide a comprehensive and 

reliable sight about the changes of metabolomic profiling. This study sought to compare 

between human urine and plasma to investigate metabolomic changes of a diet pre- and post-

intake beetroot juice that offer unique metabolomic fingerprint associated to the potential 

effects of beetroot juice. A current pilot study of metabolomic patterns used Liquid 

Chromatography coupled to Mass Spectrometer (LC-MS) to carry out an analysis for seventy-

two plasma and urine samples, equally. Samples were collected from nine adult healthy 

subjects (4 samples per subject) at pre-, as baseline, and post-intake beetroot juice in three 

stages, after 2hrs, 4hrs, and 8hrs. On the basis of the validation of data modelling, robust 

separation was observed between urine samples pre and post-intake beetroot juice and was 

more fitting and significant than the separation between plasma samples. The results of pilot 

study indicate that metabolomics screening of urine samples may be the best tool and a 

potential approach to predict the metabolomic profiling than plasma samples to assess the 

metabolic effect of a diet pre- and post-intake beetroot juice. As a result of the effects of 

beetroot juice, the present results also uncover significantly changes in most important 

metabolites including amino acid, peptide, Co-factors and vitamins which may contribute to 

the consolidation of the using of plant metabolites and natural substances to synthesis the 

nanoparticles for the biomedical applications. 

Keywords: Metabolomic Profiling, Beetroot Juice (BJ), Biological Fluid, LC-MS, Principal 

Components Analysis (PCA), Orthogonal Partial Least Squares- Discriminant Analysis (OPLS-

DA).. 
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Introduction: 

Nutrition studies reported that high nitrate vegetables have special and different role in 

determination of relation between biological systems and nutritional status [1]. Beetroot as 

well as many types of the vegetables such as celery, lettuce, spinach and rocket…etc., have 

been classified as nitrate-rich vegetables which can rises the levels of circulating metabolites 

of nitric oxide (NO). Beetroot is one of the common popular vegetable in wide rang about of 

world as a part of healthy diet packed with nutrition and plays an important role as 

antioxidants which help in prevent cell damage and reduce the risk of many disease. It can 

be consumed raw or used in other different forms such as its using in the food industry for 

the production of dry and frozen preserves, as concentrated fruit juices, or as food additives 

[2]. Many previous studies have suggested that foods with the highest nitrate contents may 

contribute in fighting of many of chronic disease such as coronary heart disease [3], ischemic 

stroke [4], high blood pressure [5] and diabetes mellitus [6]. Also, a number of specific 

biomarkers for foods such as meat and vegetables that can be used as indicators in prediction 

the negative or positive influence for these types of foods were exposed by other nutrition 

studies [7]. 

However, the effect of nutritional factors on human biological systems which reflex the 

complex relationship between nutrients and metabolism processes remains to be understood. 

Recently, nutrition-based metabolomics research seek well-established the true association 

between dietary intake and its influence human and animal health through assessment the 

metabolic effects of dietary. This assessment provide the tries to increase understanding of 

metabolic pathways changes during diet involved in this relationship between nutrients and 

disease progression. Recent applications of metabolomics studies of nutrition, metabolism 

and lipid dysfunction were covered by M. Oresic in his review [8]. According to develop the 

uses of metabolomic strategy in this field, other authors in 2016 reviewed many of nutrition 

studies and listed them base on metabolomic technique, dietary factor, study duration, 

samples and biomarker [9]. 

Based on the hypothesis tested and goal of metabolome study, metabolomic analytical 

strategy has been divided to two strategies included a targeted and untargeted approach. Also 

the type and easy availability of sample are main factors which be taken into consideration to 

study the changes of metabolomic profiling by these strategies. Thus, choosing of the potential 

specimen and appropriate approach become essential key in the application of metabolomic 

analysis to be the better tool to enhance understanding of the relation between nutrition and 

human metabolomic profiling. For this reason, this study was designed to compare between 

two common human biological fluids (urine and plasma samples) to choose the best tools 

which can be used to assess the metabolic effect of a diet associated with beetroot juice. 

 

Materials and Methods: 

Chemicals and Solvents: 

HPLC grade Acetonitrile (ACN) and formic acid (98%) were purchased from Fisher 

Scientific (Loughborough, UK) and BDH-Merck (Poole, UK), respectively. A Direct-Q 3 

Ultrapure Water System (Millipore, Watford, UK) was used to produce HPLC grade water. 

Ammonium carbonate and methanol (MeOH) were obtained from Sigma-Aldrich (Poole, UK). 

 

Subjects and Experimental Design: 

Seventy-two human plasma and urine samples, equally, were collected from nine 

healthy and non-smoker adult volunteers (age 30 ± 5 years, stature: 180 ± 8 cm, body mass: 

83.4 ± 10.4 kg). After checking of family history for all volunteers, they were underwent many 
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investigations to exclude any person had a current illness or viral infection within one month 

ago, and had a known disorder as hypertensive (140/90 mmHg) or premature cardiovascular 

disease. 

All participants in the study provided written informed consent and a medical 

questionnaire before the study began. Specimen of subjects (plasma and urine) were taken as 

four samples for each specimen per subject in same day and were divided to one specimen  

pre-, as baseline, and three specimens  post-intake beetroot juice in three stages, after 1hr, 

2hrs, and 6hrs. Collection of samples and schematic of study are summarised in figure 1. 

Plasma sample was immediately separated from centrifuged blood after it’s collected at 

5000rpm for 10min and stored at -20oC. Urine samples were collected in urine containers, it 

labelled with participants name, and delivered to the laboratory for storage at -20°C until the 

day of analysis. 

 

Plasma & Urine Samples preparation: 

Preparation of sample in metabolomics analysis mainly depends on type of samples and 

analysis methods [10]. Plasma and urine samples were stored at -20oC and thawed at room 

temperature before its preparation. On analysis day, these samples were prepared for LC-MS 

analysis by unfreezing them at room temperature. For urine samples preparation, 200ul of 

each urine were thoroughly mixed with 800μl of CAN to precipitate urine protein content. 

Then, the solution was thoroughly mixed by a vortex machine and centrifuged for 10 -15min 

with 15000 rpm at 4oC. 

The clear solution, supernatant, from each samples was transferred to the relevant 

HPLC vials to be ready for LC-MS analysis.  In the identification of metabolites plasma 

samples, the protein precipitation by methanol may be the most appropriate way to treatment 

the protein content in plasma samples in LC-MS approaches to avoid damage to the analytical 

column and MS capillaries [11]. Therefore, the plasma preparation was performed by dilution 

of 200ul of each plasma sample with 800ul of MeOH/CAN (80/20) followed by shaking and 

centrifugation at 4oC for 10 -15min/15000 rpm. Then, 800μl of supernatant for each sample 

was transferred onto the correspondingly labelled HPLC vials for analysis. 

 

Figure 1: Indicative representation of plasma and urine specimens’ collection schematic at four 

stages for two conditions. Firstly without dietary conditions as baseline stage (pre-intake 

beetroot juice) and secondly with dietary conditions (post-intake beetroot juice) in three stages 

at 1hr, 2hrs, and 6hrs 
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HILIC–HRMS Analysis Conditions: 

LC-MS-based plasma and urine samples analysis was performed on an Dionex 3000 

HPLC (Thermo Fisher Scientific, Hemel Hempstead, UK) combined with an Exactive Orbitrap 

(Thermo Fisher Scientific) in both positive and negative mode set at 50,000 resolution 

(controlled by Xcalibur version 2.1.0; Thermo Fisher Scientific, Hemel Hempstead, UK). The 

mass range (m/z) was scanned at 75–1200 and the capillary temperature was 320oC as well 

as the flow rates of auxiliary gas and sheath were 17 and 50 arbitrary units, respectively. The 

separation was carried out by injection 10μl of each sample solution on a zwitterionic-

hydrophilic interaction chromatography column, ZIC-pHILIC column, (150 mm x 4.6 mm; 

5μm from HiChrom, Reading, UK) with mobile phase of (A): 20 mM ammonium carbonate in 

HPLC grade water (pH 9.2), and (B): HPLC grade acetonitrile (CAN). 

Finally, The prepared urine and plasma sample solutions were kept in a vial tray which 

was set at 4°C and a flow rate of mobile phase was 300 μL/min in binary gradient mode which 

was as follows: 80% of B at 0 min, 20% B at 30 min, 20% B at 36 min, 80% B at 37 min and 

80% B 46 min [12 & 13]. 

 

LC-MS Data Processing and Statistical Analysis: 

M/Z mine 2.14 was used to extract raw LC-MS files obtained from Xcalibur software 

[14] in order to metabolite identification by peak extraction and alignment, as previously 

described. Data from the Human Metabolome Database (HMD), Lipid Maps and the Metlin 

Database were collected to prepare unified database called House Metabolite Database which 

used for search the accurate masses and detect a putative identification of metabolites [15]. 

Background peaks in the blank in MZmine were removed before data transferring for carrying 

out univariate analysis. Univariate analysis including normalisation, the area for each 

metabolite divided to the mean of the peak areas, for each metabolite, across the samples with 

and without beetroot juice. Statistical analysis, paired t-test (p-value) and fold changes (ratio), 

were completed in Excel (Microsoft Office 2013). SIMCA-P version 14.0 (Umetrics, Sweden) 

was applied to conduct the multivariate analysis for data modelling to build the models of 

principal components analysis (PCA), an unsupervised analysis method, and Orthogonal 

Partial least squares- discriminant analysis (OPLS-DA), a supervised method, [16]. For 

determining of significant influence of the components in the dataset, S-plots was generated 

by centring of data and extraction of Pareto scaled for both models, PCA and OPLS-DA. 

 

 

Results and Discussion: 

The first and important step in study of metabolomic changes is correct selecting of 

biological samples to achieve wanted goal through understanding these complex changes in 

metabolic pathways. 

 

Pathway and metabolites concentration changes: 

Experimental studies of metabolic patterns play a major role that researchers use to 

select appropriate samples to determine changes of metabolic. The LC-MS method was used 

to identify the plasma and urine metabolites which change before and after intake beetroot 

juice by healthy humans. 

In plasma and urine samples from this study, hundreds of metabolites with minimal 

masses and retention times (deviation <3 ppm, MSI levels 1 or 2) were identified by searching 

the database and matching standards against MZmine 2.14. For comparison among 

metabolites on the same axis to obtain the best modeling for data comparison, the peak areas 
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for each metabolite at all time points were normalized as it was applied and confirmed in our 

previous study [15]. 

 

Paired t-tests and fold changes (ratios) were performed as univariate analysis to 

compare among four time samples at pre-, and during 2hrs, 4hrs, and 8hrs post-intake 

beetroot juice to determine that differences were intrinsically related to the samples taken. In 

univariate analysis, a one-way analysis of the original data was processed by calculating the 

above ratio. This comparison between samples indicated that metabolic changes evident 

occurred between the time points of baseline (pre-intake) and treated-line (post-intake) to be 

goal of building a multivariate model of current study approach. 

 

Thus, the identification of metabolites and their pathways in urine and plasma samples 

which altered in response to nutrition with beetroot juice were highlighted. Data filtering by 

normalization and one-way analysis revealed significant changes in concentration of 

metabolites in urine and plasma samples in both positive and negative ion modes. These 

relevant variables, which were significantly changed in response to these effects, were selected 

based on the calculation of the significance of the variables (P value < 0.05). In addition to the 

calculation of the significance of the variables (paired t-test, p-value,), all significant features 

were evaluated for significance using significance of variables in prediction (VIP) statistics. 

The significance of the VIP projection coefficient variables reflects the contribution of hidden 

variables to the dependent model in relation to other variables through assessment of the 

relative importance of each X variable in relation to each X variable in the predictive model. 

Metabolites with a VIP value greater than 1 (VIP > 1) this mean it contribute the most to in 

the predictive model [17]. 

Significantly differences in thirty-five urinary metabolites and thirty-three plasma 

metabolites were identified by two-tailed t-test with threshold 0.05. Metabolites with notable 

differences in their profiles in comparing of urine samples and plasma samples, both samples 

separately, pre- and post-intake beetroot juice are summarised in table 1 and 2, respectively. 

Most metabolic pathways including amino acid, peptide, Co-factors and vitamins were 

significantly affected. Thus, these significant metabolites were projected as key features in 

section of data modelling for this study. 
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Table 1: The relevant important metabolites with high impact in plasma samples at pre 

and post-intake beetroot juice based on the critical threshold for a regarding a P-value as being  

significant is 0.05 and VIP≥1.0. N= negative ion and P. 

N Ion 
Mod

e 

m/z RT Molecul
ar 

formula 

Name CV
Qc 
% 

VI
P 

P-
Val
ue 
C1-
C2 

Rati
o 

C2/
C1 

P-
Val
ue 
C1-
C4 

Rati
o 

C4/
C1 

P-
Val
ue 
C1-
C8 

Rati
o 

C8/
C1 

1 P72
8 

384.
274 

5.6
7 

C21H37
NO5 

3-Hydroxy-5, 8-
tetradecadiencar
nitine 

13.
41 

1.
63 

0.0
113 

0.5
56 

0.0
162 

0.5
85 

0.0
191 

0.6
14 

2 P67
4 

368.
279 

5.0
7 

C21H37
NO4 

3, 5-
Tetradecadiencar
nitine 

10.
91 

2.
01 

0.0
011 

0.4
15 

0.0
029 

0.4
68 

0.0
007 

0.3
91 

3 P36
5 

386.
290 

5.5
4 

C21H39
NO5 

3-Hydroxy-cis-5-
tetradecenoylcar
nitine 

8.7
5 

1.
91 

0.0
066 

0.5
72 

0.0
036 

0.5
38 

0.0
014 

0.4
84 

4 P15

4 

342.

264 

5.2

7 

C19H35

NO4 

trans-2-

Dodecenoylcarnit
ine 

18.

48 

1.

91 

0.0

028 

0.4

17 

0.0

037 

0.4

39 

0.0

026 

0.3

94 

5 P59
3 

312.
217 

5.7
5 

C17H29
NO4 

2-trans,4-cis-
Decadienoylcarni

tine 

16.
24 

1.
77 

0.0
037 

0.5
68 

0.0
049 

0.5
98 

0.0
028 

0.5
47 

6 P54
7 

314.
232 

5.6
9 

C17H31
NO4 

9-
Decenoylcarnitin
e 

6.0
7 

1.
95 

0.0
003 

0.5
01 

0.0
026 

0.5
69 

0.0
006 

0.5
01 

7 P10
20 

330.
227 

6.7
8 

C17H31
NO5 

6-Keto-
decanoylcarnitin
e 

10.
87 

1.
73 

0.0
470 

0.7
58 

0.0
173 

0.7
02 

0.0
015 

0.6
24 

8 P79
4 

258.
170 

7.9
3 

C13H23
NO4 

2-
Hexenoylcarnitin
e 

10.
91 

1.
39 

0.0
204 

0.7
73 

0.0
209 

0.7
85 

0.0
496 

0.8
43 

9 N4
13 

232.
028 

13.
75 

C8H11N
O5S 

Dopamine 3-O-
sulfate 

11.
11 

2.
01 

0.0
000 

42.
116 

0.0
000 

51.
588 

0.0
000 

11.
821 

10 P33
2 

330.
264 

5.3
9 

C18H35
NO4 

4-
8dimethylnonan
oylcarnitine 

10.
62 

1.
87 

0.0
006 

0.5
15 

0.0
019 

0.5
52 

0.0
018 

0.5
29 

11 P82
6 

372.
311 

4.9
7 

C21H41
NO4 

Tetradecanoylcar
nitine 

14.
49 

1.
61 

0.0
227 

0.7
58 

0.0
038 

0.6
76 

0.0
174 

0.7
37 

12 N3
35 

209.
067 

12.
46 

C7H14O
7 

Sedoheptulose 13.
64 

2.
00 

0.0
000 

3.8
44 

0.0
000 

7.3
68 

0.0
000 

4.8
36 

13 N6
3 

119.
035 

10.
64 

C4H8O4 D-Erythrose 19.
03 

1.
22 

0.0
101 

0.8
39 

0.0
327 

0.8
72 

0.0
393 

0.9
01 

14 P13
8 

370.
295 

5.0
1 

C21H39
NO4 

cis-5-
Tetradecenoylcar
nitine 

7.0
5 

1.
82 

0.0
259 

0.4
82 

0.0
135 

0.4
25 

0.0
076 

0.3
79 

15 N5
84 

225.
186 

5.0
2 

C14H26
O2 

(9Z)-
Tetradecenoic 
acid 

17.
52 

2.
06 

0.0
032 

0.5
48 

0.0
011 

0.4
90 

0.0
037 

0.5
62 

16 P51
5 

195.
076 

5.6
4 

C9H10N
2O3 

4-
Aminohippuricac

id 

13.
12 

2.
07 

0.0
000 

95.
650 

0.0
000 

60.
206 

0.0
007 

12.
553 

17 N4
85 

144.
030 

8.8
7 

C5H7N
O4 

2-
Oxoglutaramate 

20.
05 

1.
42 

0.0
036 

1.2
23 

0.0
000 

1.4
13 

0.0
339 

1.2
12 

18 N3
74 

178.
072 

11.
92 

C6H13N
O5 

D-Glucosamine 19.
19 

1.
89 

0.0
000 

1.9
30 

0.0
000 

1.5
60 

0.0
249 

1.2
33 

19 P1 118.
086 

11.
82 

C5H11N
O2 

L-Valine 14.
62 

1.
97 

0.0
000 

1.8
39 

0.0
000 

1.6
21 

0.0
364 

1.2
47 

20 P14
0 

288.
217 

6.0
1 

C15H29
NO4 

L-
Octanoylcarnitin
e 

13.
83 

1.
88 

0.0
033 

0.4
49 

0.0
043 

0.4
72 

0.0
042 

0.4
45 

21 P59
5 

260.
186 

7.3
8 

C13H25
NO4 

[FA (6:0)] O-
hexanoyl-R-
carnitine 

9.6
3 

1.
92 

0.0
005 

0.5
34 

0.0
004 

0.5
13 

0.0
042 

0.6
19 
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22 N4
47 

361.
202 

5.2
1 

C21H30
O5 

[ST 
trihydroxy(2:0)] 
11beta,17,21-
trihydroxypregn-
4-ene-3,20-dione 

8.9
1 

1.
78 

0.0
122 

0.7
81 

0.0
259 

0.8
28 

0.0
001 

0.6
42 

23 N1
62 

331.
192 

5.2
0 

C20H28
O4 

Gibberellin A12 8.9
1 

1.
62 

0.0
215 

0.7
39 

0.0
264 

0.7
82 

0.0
003 

0.6
22 

24 N2
46 

169.
123 

5.6
8 

C10H18
O2 

[PR] Limonene-
1,2-diol 

13.
38 

1.
97 

0.0
002 

0.6
19 

0.0
011 

0.6
64 

0.0
006 

0.6
57 

25 P53
8 

316.
248 

5.5
9 

C17H33
NO4 

[FA (10:0)] O-
decanoyl-R-
carnitine 

5.6
5 

1.
86 

0.0
049 

0.3
94 

0.0
092 

0.4
50 

0.0
050 

0.3
86 

26 N4
16 

162.
940 

9.9
9 

C4H5O2
Br 

[FA (4:0)] 2-
bromo-2-
butenoic acid 

13.
85 

2.
12 

0.0
000 

11.
985 

0.0
000 

11.
399 

0.0
000 

7.8
99 

27 N4
43 

274.
039 

5.3
3 

C10H13
NO6S 

L-Tyrosine 
methyl ester 4-
sulfate 

9.7
1 

1.
94 

0.0
000 

9.8
70 

0.0
000 

12.
786 

0.0
000 

10.
386 

28 P18

7 

344.

279 

5.2

1 

C19H37

NO4 

1,2-dioctanoyl-1-

amino-2,3-

propanediol 

10.

89 

2.

09 

0.0

015 

0.5

00 

0.0

006 

0.4

55 

0.0

004 

0.4

35 

29 N4
81 

233.
012 

6.3
7 

C8H10S
O6 

trihydroxy 
phenylethanol 
sulfate isomer 

14.
51 

1.
76 

0.0
000 

2.9
84 

0.0
001 

3.1
13 

0.0
164 

2.1
47 

30 N8
07 

230.
997 

6.1
0 

C8H8SO
6 

hydroxyphenyl 
acetic acid 
sulfate or isomer 

8.6
2 

1.
60 

0.0
004 

2.9
98 

0.0
001 

6.4
06 

0.0
000 

3.7
44 

31 P30
1 

177.
075 

10.
32 

C7H12O
5 

(2S)-2-
Isopropylmalate 

19.
72 

1.
38 

0.0
393 

0.8
84 

0.0
010 

0.8
54 

0.0
458 

0.9
04 

32 P81
7 

205.
043 

6.2
9 

C12H9O
Cl 

4-Chloro-4'-
biphenylol 

12.
98 

1.
57 

0.0
001 

20.
022 

0.0
027 

25.
142 

0.0
020 

2.5
18 

33 P10
71 

118.
121 

11.
87 

C6H15N
O 

2-Methylcholine 9.3
2 

1.
92 

0.0
000 

1.8
26 

0.0
000 

1.6
17 

0.0
433 

1.2
32 

 

 

Table 2: The relevant important metabolites with high impact in Urine samples at pre and 

post-intake beetroot juice based on the critical threshold for a regarding a P-value as being 

significant is 0.05 and VIP≥1.0. N= negative ion and P. 

No Ion 
Mo
de 

M/Z RT Molecula
r formula 

Name C
V-
Q

c 
% 

VI
P 

P-
Val
ue 

UR
1-
UR
2 

Rati
o 
UR2

/R1 

P-
Val
ue 

UR
1-
UR
3 

Rati
o 
UR3

/R1 

P-
Val
ue 

UR
1-
UR
4 

Rati
o 
UR4

/R1 

1 P9 180.
102 

11.
07 

C10H13
NO2 

(-)-Salsolinol 19
.3 

1.
67 

0.0
000 

5.28
0 

0.0
006 

19.2
84 

0.0
000 

10.8
59 

2 P7
3 

152.
071 

7.6
6 

C8H9NO
2 

(Z)-4-
Hydroxyphenyla
cetaldehyde-

oxime 

4.
1 

1.
41 

0.0
004 

24.3
85 

0.0
000 

24.8
48 

0.0
001 

6.86
1 

3 P7
5 

152.
071 

9.3
0 

C8H9NO
2 

(Z)-4-
Hydroxyphenyla
cetaldehyde-
oxime 

16
.5 

1.
36 

0.0
014 

1.70
1 

0.0
000 

1.77
4 

0.0
254 

1.22
8 

4 P4
26 

156.
066 

8.1
8 

C7H9NO
3 

2-amino-5-
methyl-
muconate 
semialdehyde 

8.
6 

1.
69 

0.0
000 

4.34
6 

0.0
000 

17.7
85 

0.0
003 

6.37
8 

5 P5
53 

154.
050 

7.0
5 

C7H7NO
3 

3-
Hydroxyanthran
ilate 

14
.7 

1.
62 

0.0
015 

2.59
2 

0.0
000 

7.96
4 

0.0
024 

2.72
2 
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6 P6
43 

195.
076 

5.6
5 

C9H10N
2O3 

4-
Aminohippurica
cid 

8.
6 

1.
79 

0.0
000 

53.5
68 

0.0
000 

83.1
48 

0.0
000 

30.2
30 

7 P6
73 

177.
066 

5.6
3 

C9H8N2
O2 

4-
Hydroxyaminoq
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Data Modelling by Unsupervised and Supervised Models: 

A multivariate data modelling analysis was performed using two general modelling 

strategies to identify patterns of metabolic differences. Unsupervised PCA models and 

supervised OPLS-DA models were created for each set of biofluid samples to compare beet 

juice metabolites 

 

Unsupervised Data Modelling: 

The data obtained from the analysis of plasma and urine samples on a ZICpHILIC 

column were first modeled using a principal component analysis, unsupervised model, to 

reduce the individual components and obtain some form of linear summation by determining 

the exogenous variables. Principal component analysis (PCA) is defined as ʺa multivariate 

technique that analyzes a data table in which observations are described by several inter-

correlated quantitative dependent variables. Its goal is to extract the important information 

from the table, to represent it as a set of new orthogonal variables called principal 

components, and to display the pattern of similarity of the observations and of the variables 

as points in maps˝ [18]. 

In addition to the overview of compounds separation by model, the main diagnostic tools 

that provide a summary of the suitability and goodness of the PCA model are Variance 

Explained - R2X (Cum) and Variance Predicted-Q2 (Cum) [19 - 21]. Table 3 summarizes the 

R2 and Q2 values as diagnostic tools of model descriptions for changes in both samples, 

plasma and urine, to indicate to model goodness and fit dependent on significant 

discrepancies values. 
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Table 3: summarising the R2 and Q2 values in both plasma and urine samples. 

Model 

PCA 

Specimen 
Group R2X(Cum) Q2(Cum) 

Plasma Pre- vs post- 0.527 0.571 

Urine Pre- vs post- 0.813 0.692 

 

 

Figure 2 shows the split PCA of the four groups in beetroot juice taking study after 

normalization of individual metabolites from plasma samples collected at four time points per 

subjects. While, figure 3 shows same analysis of PCA for urine samples at same four time 

points as in plasma samples. 

Based on the overview of the observations in Figures 1 and 2, we can see that PCA was 

not clearly segregated due to the unobserved differences in metabolites profile between plasma 

samples unlike urine samples that were clear separation by PCA as a result to observed 

differences in metabolites profile. Also, the R2X (0.527 and 0.813) and Q2 (0.571 and 0.692) 

values for plasma and urine, respectively, presented in table 3 match with the overview of the 

observations in figures 1 and 2 and confirm that the PCA separation for urine samples more 

clear and fit than plasma samples. 

 

Figure 2: The split PCA of the four plasma sample groups in beetroot juice taking study. 
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Figure 3: The split PCA of the four urine sample groups in beetroot juice taking study. 

 

Observation maps (point plots applied by PCA) are commonly used to compress single 

components and unreal variables, aggregate linear input data, and exploit data collinearity 

[22]. Once the grading scheme has been achieved to fit the data and dimensional issues have 

been eliminated, the OPLS-DA classification model is used to divide the sample into each 

group to understand differences between groups. Therefore, supervised data modelling will be 

required. 

 

Supervised Data Modelling of Urine Samples: 

If identification of significant split between study groups was not achieved, Reverting to 

a supervised OPLS-DA model may be necessary to determinate statistical effects. OPLS-DA 

can identify splits that PCA cannot, but the statistical significance of the splits must be tested 

before conclusions can be drawn from the results [23]. The score plot of OPLS-DA model was 

performed to comparison between pre-taken samples and post-taken at three time points for 

urine samples. This comparison goals to evaluate the highly metabolomic changes between 

study groups to establish fit OPLS-DA model. According to modelling results and clear 

separation by PCA, the comparison between urine sample groups is appropriate selection to 

choose the best time point can be used in OPLS-DA analysis. Three OPLS-DA models of the 

data were built for this comparison in order to get a clearer picture of the differences between 

the first sample (Ur1) and second (Ur2), third (Ur3) and fourth (Ur4) urine samples as show 

on figures 4, 5 and 6. The outlier variables were observed in figure 4 (CE2UR2, red color) and 

figure 6 (RT1UR4, red color) which reduce the goodness of model fitting. 

The overview of OPLS-DA model and model quality characterized by R2X, Q2 and CV-

ANOVA (P-Value) values which are detailed in table 4 illustrate that the comparison between 

Ur1 and Ur3 samples is best time points to build multivariate models for our study 

approaches. 
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Table 4: summarising the R2, Q2 and P-values for OPLS-DA in urine samples. 

OPLS-DA for Urine samples 

Time point R2X(Cum) Q2(Cum) P-Value 

Ur1 vs Ur2 0.765 0.743 0.00157942 

Ur1 vs Ur3 0.837 0.839 0.000106282 

Ur1 vs Ur4 0.797 0.787 0.000480965 

 

 

 

 

 

Figure 4: Overview of the observations of OPLS-DA model for separation between two time 

points (Ur1 and Ur2) for urine samples from healthy subject. R2X (cum) 0.765, Q2 (cum) 0.743 

and P-value= 0.00157. 
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Figure 5: Overview of the observations of OPLS-DA model for separation between two time 

points (Ur1 and Ur3) for urine samples from healthy subject. R2X (cum) 0.837, Q2 (cum) 0.839 

and P-value= 0.000106 

 

 

 

Figure 6: Overview of the observations of OPLS-DA model for separation between two time 

points (Ur1 and Ur4) for urine samples from healthy subject. R2X (cum) 0.797, Q2 (cum) 0.787 

and P-value= 0.00048. 
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Figure 7: Overview of the observations of OPLS-DA model for separation between two times 

points (C1 and C4) for plasms samples from healthy subject. R2X (cum) 0.395, Q2 (cum) 0.139 

and P-value= 0.111791. 

 

 

Supervisor Data Modelling of Urine vs Plasma Samples: 

The score plot of OPLS-DA model was carried out in this step from current study to 

comparison between baseline samples and post-taken samples at one time point, after 

120min, for plasma (C1 vs C4), figure 7, and urine (Ur1 vs Ur3) samples, figure 5, to assess 

the goodness of OPLS-DA data modelling. 

Due to internal validation methods such as interpretations of variance and expected 

values as well as overview of model are not sufficient to assess model quality and fitting. In 

untargeted metabolomics studies, the external validation of data modeling is necessary to 

obtain reliable results [23]. Two external validation methods, including cross-validation 

ANOVA (CV-ANOVA) and the permutation test can be performed for OPLS-DA models 

generated with SIMCA-P. CV-ANOVA presents the returned P-value which indicates the 

statistical significance of the test with threshold 0.005. While, a reference distribution for 

R2/Q2 values is provided by permutation test [24]. The model validity criterion according to 

permutation test is achieved under two conditions. First, all green values in R2 must be less 

than the starting point on the right. Then all the Q2 values (blue) on the left should be less 

than the right side points (original point), or the Q2 points regression line intersects the left 

vertical axis to be under zero [25]. 

CV-ANOVA with p-value, first external validation methods, was calculated for two OPLS-

DA models built for obtained data from plasma samples (C1 vs C4) and urine samples (Ur1 

vs Ur3). These values confirm that model which built for plasma samples was not fitting and 

nonsignificant with P-value at 0.111791. Contrastingly, the returned P-value of OPLS-DA 

model built for urine samples was 0.000106282 which indicates that this model is high 

significantly fitting. 
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Through application the second external validation methods, the permutation test gave 

the same outcome and provided the evidence on that OPLS-DA models are not fitting in 

plasma sample (figure 8) according to permutation test conditions. It is observed, all green 

values in R2 are in same levels with, not less than, the starting point on the right. Also, many 

of the blue Q2 values on the left are high than the original points on the right. This 

observations indicate to weakness of OPLS-DA model for plasma samples and it is not fitted 

to be accepted. 

Two conditions of permutation test were achieved in the model validity criterion for the 

comparison between urine samples. This test gave the reliable assessment for the goodness 

of fit (R2 and Q2) of the original model at this comparison between Ur1 vs Ur3 as shown on 

figure 9. 

 

Figure 8: Cross validation of OPLSDA model for the classification of pre-beetroot taking group 

(C1-C4) in plasma samples by the Permutations test. 
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Figure 9: Cross validation of OPLSDA model for the classification of pre-and post-beetroot 

taking group (Ur1-Ur3) in urine samples by the Permutations test. 

 

 

Conclusions: 

An LC/MS-based current pilot study which designed to assess potential beetroot juice 

effect on human metabolome showed that metabolic changes were more pronounced in urine 

samples than in plasma samples. Study outcomes that reflected acute metabolic patterns in 

urine compared with plasma suggest that metabolic screening of urine samples before and 

after nutrition with beetroot juice is the best possible tool for predicting the metabolic 

characterization of this nutrition effect. Reasonable approach. 

The use of PCA and OPLS-DA in study data modelling shows a clear separation of 

urinary metabolites and provides a reasonable approach to distinguish between pre- and post-

intake beetroot juice groups, although separation would not be possible in plasma groups by 

same approach. 

Due to this study designed to investigate the potential specimen and appropriate 

approach which can be use as the prospective tool to reveal the metabolic effect of a diet pre- 

and post-intake beetroot juice, it focused on one group of ages and gender. Therefore, as a 

recommendation, an influence of age and gender on the human plasma and urine samples 

associated to nutrition (beetroot juice) is recommended in future. 

Also, throughout the comparison study between changed metabolites as a result of 

beetroot effects taking, we noted there were several metabolic pathways are affected after 

beetroot juice digestion. These metabolic pathways included amino acids, lipids, peptides, 

xenobiotics, carbohydrates, nucleotides, cofactors and vitamins that need to be studied more 

depth in future. Thus, this future work may be very important in order to study the impact of 

beetroot on human metabolomic profiling and explore potential predictive markers for these 

effects. 
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