MINAR International Journal of Applied Sciences and Technology

Article type : Research Article

Date Received : 03/07/2021
Date Accepted : 13/08/2021
Date published : 01/09/2021
: www.minarjournal.com
http://dx.doi.org/10.47832/2717-8234.3-3.7

COMPUTATIONAL INVESTIGATION OF A4-GRAPHS FOR CERTAIN LEECH LATTICE GROUPS

Asmaa Jaafar OUDAH ${ }^{1}$ \& Ali Abd AUBAD ${ }^{2}$

Abstract

In the case of a finite simple group ${ }^{G}$, and ${ }^{G}$-conjugacy class of element of order 3, The A4-graph is define as simple graph denoted by $\mathrm{A} 4\left(G_{,} X\right)$ has X as vertex set and $x, y \in X$ are adjacent if and only if $x \neq y$ and $x y-1=y x-1$. We aim to investigate computationally the structure of theA4 (G, X) when $G \cong H S$ or $G \cong M c L$ Leech Lattice groups. Keywords: Leech Lattice Groups; Commuting Graph; Diameter, Cliques.

[^0]
1. Introduction

One of the most understandable approaches of examining group structure is to examine a group action on a graph. Similarly, comparable approaches are used to investigate the algebraic characteristics of rings [1]. When examining the algebraic characteristics of finite simple groups, the involution components are crucial. In finite simple groups, however, the members of order 3 are equally essential.For example, a class of elements of order 3 can form the Conway group, which is the group of automorphisms of the Leech lattice in 24 dimensions, and any two of these classes can commute or form the alternating groups A4, A5 or SL2(3),SL2(5). In John Thompson's Quadratic pairs with prime 3, A serious scenario exists in such a class. Several studies in this field have been conducted see ([2,3,4 and 5]). For a finite simple group G and X a G-conjugacy class of G. The A4-graph is stand forA4 (G, X) that has X as a vertex set with two vertices $x, y \in X$ is connected if $\mathrm{x} \neq \mathrm{y}$, where $\mathrm{xy}-1=\mathrm{yx}-1$. The $\mathrm{A} 4(G, X)$ is a simple graph that was initially shown by Aubad[6] in that paper anordinary properties of the A4-graph by the side of the structure of A4($G, X)$ when $\mathrm{G} \cong 3 \mathrm{D} 4(2)$ were scrutinized. One point to consider about A4($G, X)$ would be that the alternating degree 4 group which is the subgroup $\left\langle x, y>\cong A_{4}\right.$ such that $x, y \in X$ are adjacent. This paper goal to investigate the A4 (G, X) when $G i_{\text {s either }} G \cong H S$ or $G \cong M c L$ Leech Lattice groups and X is $a G$-conjugacy class of elements of order 3.The research involves determining the diameter of the graph as well as investigating the disc structures. Furthermore, the clique and the girth for the graph are computed. Henceforth, we let $G_{\text {to be a finite simple and }} X=t^{G}$ where ${ }^{t}$ be an elements of order 3 in G. The conjugation group obviously generates A4-graph automorphisms and is transitive over its vertices. Assume that ${ }^{x}$ be an arbitrary element in ${ }^{X}$ and $i \in \mathbb{Z} \dagger_{\text {; (while working with graphs using the usual distance function, This distance function is }}$ denoted by $\left.{ }^{d}(),\right) \Delta_{i}(x)$ define as the set of vertices of $\mathrm{A} 4(G, X)$ with distance equal to i from x. We put $G_{x(=} C_{G(x))}$ to highlight the centralizer of the element x in G. Evidently, $\Delta_{i}(x)_{\text {sorted into a union of specific }} C_{G(x) \text {-orbits (this at }}{ }^{G}$ acting by conjugation on the set ${ }^{X}$). As a consequence, we will determine the $C_{G(x) \text {-orbits of }} X$ in order to examine the characteristics of the A4-graph. Lastly, we will extensively depend on Atlas [7] for the $G_{\text {- }}$ conjugacy class labels.

2.General Properties

In this part, we will look at some general characteristics of the A4-graph of a finite simple group. We begin with an explanation of the A4-graph, followed by an illustration.
 conjugacy class.The A4-graph is a simple graph with the vertex set ${ }^{X}$, typically indicated by A4 ${ }^{(G, X)}$ with $x, y \in X$ are connected by edge if $x \neq y_{\text {and }} \mathrm{xy}-1=\mathrm{yx}-1$.
Examples 2.2:
1-Let ${ }^{G} \cong S_{G_{\text {be }}}$ a symmetric group of degree 5 and $\mathrm{t}=(1,2,3)$, then we have : $X=t^{G}$ $=\{(1,2,3),(2,4,3),(1,3,4),(1,4,2),(2,6,3),(1,3,6),(1,6,2),(2,5,3),(1,3,5),(1,5,2)\}, \Delta 2(t)=\{(3,4,5)$, $(1,4,5),(2,4,5),(3,6,4),(1,6,4),(2,6,4),(3,5,6),(1,5,6),(2,5,6),(3,4,6),(1,4,6),(2,4,6),(3,5,4)$, $(1,5,4),(2,5,4),(3,6,5),(1,6,5),(2,6,5),(2,3,4),(1,4,3),(1,2,4),(2,3,6),(1,6,3),(1,2,6),(2,3,5)$, $(1,5,3),(1,2,5),(4,5,6),(4,6,5),(1,3,2)\}$.

The graph A4 ${ }^{(G, X)}$ is connected with Diam A4 $(G, X)=3$. The discs structure of the graph A4 (G, X) are: $\Delta 0(\mathrm{t})=\mathrm{t}, \Delta 1(\mathrm{t})=\{(2,4,3),(1,3,4),(1,4,2),(2,6,3),(1,3,6),(1,6,2),(2,5,3),(1,3,5)$, $(1,5,2)\}, \Delta 2(t)=\{(3,4,5),(1,4,5),(2,4,5),(3,6,4),(1,6,4),(2,6,4),(3,5,6),(1,5,6),(2,5,6),(3,4,6)$, $(1,4,6),(2,4,6),(3,5,4),(1,5,4),(2,5,4),(3,6,5),(1,6,5),(2,6,5),(2,3,4),(1,4,3),(1,2,4),(2,3,6)$, $(1,6,3),(1,2,6),(2,3,5),(1,5,3),(1,2,5)\}, \Delta 3(t)=\{(4,5,6),(4,6,5),(1,3,2)\}$. This information can be achieved computationally by using the gap package YAGS [10] as we describe in the next procedure which proceeds as follows:
2. Let $G \cong D 12$ theDihedral group of order 12. The group ${ }^{G}$ has only one class of element of order 3. Obviously, the graph $A 4(D 6, X)$ is totally disconnected.

The general properties of the A4-graph can be seen the following results which are proving in [6]. Lemma 2.3: Let ${ }^{G}$ be a finite simple group, and $X=t^{G}$ (such that t has order 3 in ${ }^{G}$) then A4 (G, X) has the following properties:
1- A4 ${ }^{(G, X)}$ is a simple, undirected, regular graph. Moreover, for any two adjacent nodes of $A 4(G, X)$ the will generated the group $A 4$.
2- A4(${ }^{G, X)}$ separated into a union of particular $C_{G(x) \text {-orbits. Moreover, in case } x \in \Delta 1(\mathrm{t}) \text {, then }}$ tx has the order 3.
Let ${ }^{C}$ be an random ${ }^{G}$-class, let we look at the set:
$X C=\{x \in X \mid t x \in X\}$.
We can directly note that when $X C \neq \varnothing$. This set in this case split into union of certain $C_{G(x)}$ orbits of ${ }^{X}$. The path of how the non-empty set XC breakis essential to conclude in which $\Delta_{i}(t)$ the setXCbelong to. By contributing to Class structure constants, measuring the length of the set XC can also be beneficial. The size of the next set are class structure constants:
$\{(u 1, u 2) \in C 1 \times C 2 \mid u 1 u 2=u\}$
The random elements ${ }^{u}$ is a fixed in the class C3such thatC1, C2, C3 are G-conjugacy classes. The complex character table of ${ }^{G}$, supplied in the Atlas may now be used to extract these constants, which are now available electronically in modern computer algebra

3.Discs Structure of A4 $(\boldsymbol{G}, \boldsymbol{X})$

The Leech Lattice Group HS has only one class elements of order 3 named by 3A, while the group $M c L$ has two classes of elements of order 3 namely $3 A$ and $3 B$. For the aforesaid groups the sizes of conjugacy classes for elements of order 3 and the permutation ranks on each class. Also, the structure of the centralizer of t in ${ }^{G}$ which can be seen in [7] are given in the next table. package libraries of Gap[8].
Let we setC1 $=C, C 2=X=C 3$ and $u=t$, thuswe have
$\left|X_{C}\right|=\frac{|G|}{\left|C_{G}(t)\right|\left|C_{G}(g)\right|} \sum_{i=1}^{s} \frac{\chi_{i}(p) \chi_{i}(t) \overline{\chi_{i}(t)}}{\chi_{i}(1)}$
Where in the class C, the element p is fixed. And $\chi 1, \chi 2, \ldots, \chi$ srepresent the complex irreducible characters of G.

Table 3.1: Disc Sizes and Permutation Character

Group	Class	Permutation Rank	Size of Class	CG(t)-Structure

HS	3A	399	123200	$C_{3} \times S_{5}$
McL	3A	10	30800	$\left({ }^{\left(C_{3 \times}\right)\left(C_{3 \times} C_{3}\right):} C_{3)}: C_{3)}: S L_{(2}\right.$ 5)
McL	3B	1080	924000	$\begin{aligned} & C_{3 \times(}\left(\left(C_{3 \times} C_{3 \times} C_{3}\right):\left(C_{3 \times} C_{3 \times}\right)\right): \\ & \left.C_{3}\right) \end{aligned}$

The structures of the $\Delta i(t)$ of the $A 4(G, X)$ are examined in this section for the groups $H S$ and McL.We use a computational technique to get the following results, with help from Gap and the OnLine Atlas[9].

3.1 Disc structure of A4 (McL, 3A)

The Atlas tell us the size of the class $3 A$ is 30800 and $C_{G(t)} \cong\left(\left(C_{3} \times\left(\left(C_{3} \times C_{3}\right): C_{3}\right): C_{3}\right): S L(2,5)_{\text {for } G \cong M c L}\right.$. The graph A4 (MCL, 3A) is totally disconnected such that there are no edge between any two distance vertices in the graph with 10 $C_{G(t) \text {-orbits. }}$

3.2 Disc structure of A4 (HS, 3A)

The Atlas tell us the size of the class 3 A is 123200 and $C_{G(t)} \cong C_{3} \times S_{5 \text { for } \mathrm{G} \cong \mathrm{HS} \text {. The graph is }}$
 orbits forA4(HS, 3A) are given in as we see the following:
$3 A(15,(18) 2,90,120) \in \Delta_{1}(t)$
$2 \mathrm{~A}(15,90,120), 2 \mathrm{~B}(18) 2,3 \mathrm{~A}((90) 4, \quad(360) 2), 4 \mathrm{~B}((90) 4,360), 4 \mathrm{C}(360) 6,5 \mathrm{~A}(18) 2$, $5 B(60,360), 5 C(360) 27,6 B((90) 3,120), 7 A(360) 34,11 A B \quad(360), 12 A((90) 8,(360) 4), 15 A(120)$, $20 \mathrm{~A}(90) 2^{\in}-\Delta_{2}(\mathrm{t})$
$1 \mathrm{~A}(1), 3 \mathrm{~A}(20) 3,(120) 3,(360) 2), 4 \mathrm{~B}(90,(360) 3), 4 \mathrm{C}((90) 2,180,(360) 8), 5 \mathrm{~B}(120,180), 5 \mathrm{C}(360) 18$, $6 \mathrm{~B}((120) 2,(360) 14), 7 \mathrm{~A}(360) 47,8 \mathrm{~A}((90) 8,(360) 20), 8 \mathrm{BC}(360) 14,10 \mathrm{~A}((90) 6,(360) 24), 10 \mathrm{~B}(360) 2$, $11 A B(360) 27,12 A(360) 12,15 A((120) 2,(360) 8), 20 A B((90) 2,(360) 4) \in \Delta_{3}(t)$
A notable result one can see in the above which is the only the classes $1 A, 2 A, 2 B, 5 A, 8 A B C, 10 A B$. The distance between t and x in $\mathrm{A} 4(G, X)$ decided by the G conjugacy class to which ${ }^{t x}$ has a place.

3.3 Disc structure of A4 (McL, 3B)

The Atlas tell us the size of the class 3 B is 924000 and $C_{G(t)} \cong C_{3 \times\left(\left(\left(C_{3 \times}\right.\right.\right.} C_{3 \times} C_{3):\left(C_{3 \times} C_{3 \times)}\right): C_{3}}$
 $x \in \Delta_{i}(t) ; \mathrm{i} \in \mathbb{N}$ with the sizes $C_{G(t)}$-orbits forA4($\left.M c L, 3 B\right)$ are provided in the following:
$3 B((81) 2,324)^{\in} \Delta_{1}(t)$
$2 \mathrm{~A}((81) 2,(324)), 3 \mathrm{~B}((36) 6,(972) 4), 4 \mathrm{~A}((486) 2,(972) 10), 5 \mathrm{~B}(972) 55,6 \mathrm{~B}((162) 2,243), 7 \mathrm{AB}((486) 6$, (972)18), $9 \mathrm{AB}(324) 3,11 \mathrm{AB}(972) \in \Delta 2(\mathrm{t})$.

1A(1), 3B((4)2, (12)3, (36)18, (324)6, (486)4), 4A((162)2, (243), (486)2, (972)24), 5B(972)70, 6A((162)2, (324)12, (972)8), 6B((324)12, (486)8, (972)22), 7AB(486, (972)91), 8A ((486)8, (972)96), 9AB((108)8, (324)6, (972)48), 10A((162)2, (486)3, (972)44), 11AB(972)66, 12A((162)2, (486)4, (972)32), 14AB((486)2, (972)16), 15AB((486)2, (972)24), 30AB(162, (972)4 $\quad \triangle 3(\mathrm{t})$. $3 A((4) 2,(6), 9 A B(108) 4 \in \Delta 4(t)$.

The classes $\{1 A, 2 A, 6 A, 8 A, 10 A, 12 A, 14 A B, 15 A B, 30 A B\}$ can be used to know the distance between t and x in $\mathrm{A} 4(G, X)$ such that tx has a place in these classes.
4. $\boldsymbol{C}_{\boldsymbol{G}(t)}$ - Orbits of A4-graph Description

Some information about the data in our tables is desired. As said we utilize the class names given within the Atlas book in spite of the fact that we make a few adjustments. we compress the letter portions of the class name when the union of these classes is configured in alphabetical sequence. In Table 4.1, 11AB is abbreviated to $11 A \sim 11 B$.

1. The first table is about the $\mathrm{A} 4(H S, 3 A)$ which contains full information about the $C_{G(t) \text {-orbits }}$ that are essential to analyze the A4-graph structure.
Table 4.1Orbits Information for A4(HS, 3A)

Class name	Orbits number	Orbits sizes
1A	1	1
2A	3	225
2B	2	36
3A	19	2482
4B	9	1890
4C	17	5400
5A	2	36
5B	4	720
5C	45	16200
6B	20	5670
7A	81	29160
8A	28	7920
8BC	28	5040
$10 A$	30	9180
$10 B$	2	720
$11 A B$	56	10080
12A	24	6480
$15 A$	11	3240
20AB	16	1800

2. The next table involve information about the $C_{G(t)}$-orbits ${ }_{\text {of } A 4}(M c L, 3 A)$ as describe below:
Table 4.2Orbits Information for A4 (McL, 3A)

Class name	Orbits number	Orbits sizes
1 A	1	1
$3 A$	1	1
$3 B$	1	180
4A	1	1215
5B	1	11664
6A	1	1215
6B	1	0
$10 A$	1	4860
$15 A B$	1	5832

3. The next table involve information about the $C_{G(t)}$-orbits ${ }_{\text {of } A 4}(M c L, 3 B)$ as describe below:
Table 4.3 Orbits Information for A4 (Mcl, 3B)

Class name	Orbits number	Orbits
1 A	1	1
2 A	3	486
$3 A$	3	14
3B	46	9171
4 A	41	35559
$5 B$	125	121500
$6 A$	22	11988
$6 B$	45	29727
$7 A B$	232	109350
$8 A$	104	97200
$9 A B$	138	50868
$10 A$	49	44550
$11 A B$	134	65124
$12 A$	38	33372
$14 A B$	36	16524
$15 A B$	52	24300
$30 A B$	10	4050

5. Girths and Cliques Number

For a finite group ${ }^{G}$ and $X=t^{G}$ be a class for t the element of order 3 in ${ }^{G}$. Then girths and the cliques number of the connected $\mathrm{A}_{4}(G, X)$ and $\mathrm{A}_{4}\left(G, \Delta_{1}(t) \cup\{t\}\right)$ are the same. Now we employ this note to build $A 4\left(G, A_{1}(t) \cup\{t\}\right)$ in gap package YAGS [10]. Thus we obtain the following:
Table 5.1: Girth and clique number

Graph	clique number	Girth
A4(HS, 3A)	16	3
A4 (McL, 3A)	1	∞
A4 (McL, 3B)	16	3

6. Main Results

Theorem 6.1. For G one of the groups of we have the following results:
i. $\quad \operatorname{Diam~A4}(H S, 3 A)=3$ and $\left|\Delta_{1}(t)\right|_{=261},\left|\Delta_{2}(t)\right|_{=30387,}\left|\Delta_{3}(t)\right|_{=92551}$
ii. $\quad \mathrm{A} 4(M c L, 3 A)$ is totally disconnected.
iii. Diam A4 $(M c L 2,3 B)=4$ and $\left|\Delta_{1}(t)\right|_{=486},\left|\Delta_{2}(t)\right|_{=114021,}\left|\Delta_{3}(t)\right|_{=808,614,|\Delta 4(t)|}$ =878
Proof: Each of $\Delta_{i}(\mathrm{t})$ of $\mathrm{A} 4(G, X)$ is a union of specific $\mathrm{C}_{G_{(t)}}$ - orbits. Thus using the Lemma 2.3. Then we obtain i , iii. Also we can check computationally to find that $\left|\Delta_{1}(t)\right|=0$ for t element of order 3 in the class ${ }^{3 A}$ of the group ${ }^{M c L}$. Thus as the A4-graph is regular we conclude that A4 (McL, $3 A$) is totally disconnected we obtain the proof of ii.
6.Conclusion:

In this work, the link between two important branches of mathematics, "graph theory" and "group theory," is established. The alternating group A4 as a subgroup for the leech lattice groups $M c L$ and HS is investigated. For that purpose we use the A4-graph on these groups. Many results have been such that the girth, clique number, diameter and the structure of the graph.

7. References

A. Aubad, S. kadem, and A.H.Majeed "The non-zero divisor graph of a ring", IJPAM. 43, 975983.2020.
A. Zhurtov, "Frobenius groups generated by two elements of order 3", Siberian Math. J., 42:3, 450-454. 2001.
V. Mazurov, "A characterization of alternating groups", Algebra Logika, 44:1, 54-69; Algebra and Logic, 44:1, 31-39.2005.
A. Maksimenko, A. Mamontov, "The local finiteness of some groups generated by a conjugacy class of order 3 elements", Siberian Math. J., 48:3, 508-518.2007.
D.Azeez, and A. Aubad, A. "Analysing the commuting graphs for elements of order 3 in Mathieu groups". International Journal of Psychosocial Rehabilitation, 24(8): 14757192.2020.
A.Aubad A. "A4-Graph of Finite Simple Groups". Iraqi Journal of Science, 62(1), 289-294.2021.
H.Conway, R.T. Curtis, S.P. Norton, and R. A .Parker." ATLAS of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups". Oxford. Clarendon press.1985.
The GAP Group.,"GAP Groups, Algorithms, and Programming",. Version 4.11.0, http://www.gapsystem.org, 2020.
J. Tripp, I. Suleiman, S. Rogers, R. Parker, S. Norton, S. Nickerson, S. Linton, J. Bray, A. Wilson, and P. Walsh. A world wide web atlas of group representations., http://brauer. maths.qmul. ac.uk/Atlas/v3/,2021.
C. Cedillo, R. MacKinney-Romero, M.A. Pizaa, I.A. Robles and R. Villarroel-Flores,"Yet Another Graph System,YAGS", Version 0.0.5. http://xamanek.izt.uam.mx/yags/. 2021.

[^0]: ${ }^{1}$ Baghdad University, Iraq, asmaa.oda1203@sc.uobaghdad.edu.iq, https://orcid.org/0000-0002-7060-
 3777
 ${ }^{3}$ Baghdad University, Iraq, ali.abd@sc.uobaghdad.edu.iq, https://orcid.org/0000-0002-4764-2946

