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Abstract 

With the advent of cloud computing technology, the generation of data from various sources 

has increased during the last few years. The current data processing technology must 

handle the enormous volumes of newly created data. Therefore, the studies in the literature 

have concentrated on big data, which has enormous volumes of almost unstructured data. 

Dealing with such data needs well-designed frameworks that fulfil developers’ needs and fit 

colourful purposes. Moreover, these frameworks can use for storing, processing, 

structuring, and analyzing data. The main problem facing cloud computing developers is 

selecting the most suitable framework for their applications. The literature includes many 

works on these frameworks. However, there is still a severe gap in providing comprehensive 

studies on this crucial area of research. Hence, this article presents a novel comprehensive 

comparison among the most popular frameworks for big data, such as Apache Hadoop, 

Apache Spark, Apache Flink, Apache Storm, and MongoDB. In addition, the main 

characteristics of each framework in terms of advantages and drawbacks are also deeply 

investigated in this article. Our research provides a comprehensive analysis of various 

metrics related to data processing, including data flow, computational model, overall 

performance, fault tolerance, scalability, interval processing, language support, latency, and 

processing speed. To our knowledge, no previous research has conducted a detailed study of 

all these characteristics simultaneously. Therefore, our study contributes significantly to the 

understanding of the factors that impact data processing and provides valuable insights for 

practitioners and researchers in the field.  
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Introduction 

Advanced digital artefacts and their uses naturally produce massive data. Examples of 

contemporary digital technology ingrained in our daily lives include mobile phones, sensors, 

and social networks resulting in massive amounts of data, also known as big data. However, 

big data has more properties than just a lot of data. Four opposite attributes are frequently 

defined Bigdata: volume, velocity, versatility, and accuracy [1]. Big data refers to new 

methods and tools for storing, exchanging, acquiring, managing, and studying massive data 

sets with varied architectures. Big data cannot be stored using conventional data 

management methods since it can be unstructured, semi-structured, or structured. 

Parallelism utilizes these data effectively and affordably [2-3]. Partitioning, computation, and 

storage have all seen the introduction of abstract parallel processing models. Most methods 

begin with partitioning, where a sizable data set is divided across several processing nodes, 

with each node performing operations on the allocated partitioned data. Although there are 

some parallel processing variations, it is believed that each processing machine must carry 

out an identical set of activities in a shared-nothing architecture. Most models transmit their 

partial output to the master node for production and combine the results to produce the final 

product [4]. 

Big data tools and frameworks were developed due to the three V's, which are critical 

aspects of big data. Big data frameworks are intended to be used in scenarios that traditional 

systems cannot manage. The following attributes specifically enhance the potential of big 

data tools and frameworks: First, data distribution comprises breaking the data into smaller 

blocks and distributing those blocks across the cluster's available nodes. The data is stored 

in the Distributed File System (DFS) and is prepared for parallel processing following the 

distribution and fault tolerance. Every block of data is duplicated over many nodes to 

guarantee that it is always accessible, even if one of the node servers is unavailable for 

whatever reason—tools and frameworks for big data [5]. 

 

1. Related Works 

This section will discuss related papers that relied on criteria for classification and the 

use of big data frameworks: 

The authors Shikha Soni et al. presented a paper in [6] discussing big data utilizing 

frameworks such as Spark, Hadoop, Storm, Flink, and Samza. They also discussed the 

difficulties they encounter when using big data, including Data Analysis and Storage, 

Computational Complexities and Scalability, Visualization of Data and Information Security. 

Saeed Ullah et al. recommended using Hadoop Spark, Flink, Storm, and Samza in their 

study [7]. The result addresses choosing possible resource providers for big data applications 

based on specific criteria. It organizes critical large data resource management systems 

according to how a cloud computing environment is set up. They examined the advantages 

and disadvantages of various big data resource management frameworks. They assessed the 

effectiveness of resource management engines using seven essential criteria: fault tolerance, 

processing speed, machine learning, scalability, security, low latency, and dataset size. 

In their study, Sonia Saini et al. [8] concentrated on the Analysis of Twitter (Social) data 

using R and MongoDB. They talk about the R data analysis packages that may be used to 

examine EHR data and tweets. They talked about how MongoDB facilitates the mapping of 

tweets to documents, offers fundamental operations like aggregation, and what all analysis 

features/packages R offers for studying the data in the medical area. In [9], Lukman Ab. 

Rahim et al. employed seismic data and Apache Hadoop's Map Reduce function to boost the 

system's overall performance for seismic algorithms. The outcome showed that Hadoop (with 

a default block size of 64 MB) could perform comparably to the original parallel processing 
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technique but that the performance of the original parallel processing was always superior. 

They investigated the bottlenecks and enhanced the seismic algorithms system's overall 

performance. The drawback is that it Does not contain real-time Analysis like the Spark 

framework. 

After reviewing the previous papers, the researchers relied on some criteria in 

determining the use of big data frameworks. Nevertheless, they should have addressed all the 

existing measures that determine the use of the appropriate framework. Therefore, more 

standards will be taken to give an additional aspect and better credibility when using the Big 

Data framework. 

 

2. Big Data Frameworks  

In this section, big data frameworks will be introduced in some detail as follows: 

2.1. Hadoop 

Doug Cutting, a Yahoo employee, and Mike Cafarella, a professor at the University of 

Michigan, created the framework in its initial form. Later, it underwent several years of 

evolution to arrive at its current stable version. Since its first release, Hadoop has drawn 

increased scientific interest and has been embraced by several major corporations, 

including Yahoo, Amazon, Facebook, eBay, and Adobe, which has sped up the framework's 

evolution [10].  

The Hadoop Software Library, a component of the Apache Projects, is a framework 

that enables the distributed processing of large amounts of data using a small number of 

machines. Map Reduce and the Hadoop Distributed File System (HDFS) are combined to 

form Hadoop. While HDFS is responsible for storing the data in a file system, Map Reduce is 

accountable for processing the data [11]. MapReduce, Hadoop Kernel, Hadoop Distributed 

File System (HDFS), and other diverse components, including Base, Apache Hive, and 

Zookeeper, are all part of the current Apache Hadoop framework, which is depicted in 

Figure 1, [2]. 

 

 

 

 

 

 

 

 

 

 

 

The open-source software framework Apache Hadoop typically implements MapReduce 

for distributed storage and processing across massive datasets on computer clusters. 

MapReduce is the processing component of Apache Hadoop, which is made up of a storage 

component based on the Hadoop Distributed File System (HDFS). As a result, MapReduce 

can be used in various large-scale computations that are tolerant of hardware issues. The 

MapReduce calculation process is depicted in Figure 2 [12]. 

 

 

Figure 1: Hadoop Structure 
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2.2. Spark 

Spark is an open-source distributed general-purpose cluster computing platform for 

processing massive amounts of data. Spark is one of the go-to technologies for developers 

and data scientists interested in big data since it is the open-source framework for 

distributed and parallel processing currently being developed the most actively [13]. Spark 

Streaming expands the Spark core API. It makes the development of fault-tolerant real-time 

data stream processing straightforward. Only Spark's robust Spark Core API and other 

libraries can handle big data analytics and Machine Learning. The Spark ecosystem 

(Illustrated in Figure 3) includes the Spark framework's core engine as well as the following 

components: Spark SQL [Data Frames and Data Sets], Spark Streaming [Near and Real-

Time data processing], ML, Graph Analytics [GraphX] data processing, Spark Cassandra 

Connector, and Spark R Integration [14].  

Spark Streaming means real-time streaming data from sources like Twitter, Flume, 

Kafka, Kinesis, ZeroMQ, or TCP connections are processed. Real-time processing is done 

using DStream, and the supporting frameworks: Spark Streaming, Storm, and Apache 

Samza. However, Spark SQL-Relational DB Processing meant: A structured data query that 

uses a distributed dataset, such as a Spark data frame or schema RDD, referred to as 

"Spark SQL." SQL and HiveQL queries are running. Some features include database 

connectivity (ODBC/JDBC), unified data access (query sources—Hive tables, JSON), and 

integrated RDD with Spark SQL queries. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: MapReduce computation 

procedure 

Figure 3: Apache Spark ecosystem 
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 A machine learning library known as MLlib is responsible for the production of both 

standard learning algorithms and tools. This is what was intended by the term "Spark MLlib-

Library of Machine Learning Algorithms." It is made up of a variety of approach sets and the 

algorithms that go along with them. Spark The term "GraphX," which stands for "Graph 

Analytics/Visual Analytics," refers to the fact that the graph is made up of edges and 

vertices. Node is another word for the vertex, and it can refer to either a location or an 

individual who has connected relationships that are characterized by edges. Suppose that 

the entire Facebook site is a social graph; it would be very difficult to figure out who is 

connected to whom because there would be so much information to process. With Resilient 

Distributed Datasets (RDD), which in Apache Spark are merely vertices, Directed Acyclic 

Graphs (DAG) can be constructed; updates are only used to build edges. When traveling from 

one location to another, there are many distinct routes that one can take. Graph processing 

allows for the efficient generation of a shortest path between two sites. This is made possible 

if we represent locations as vertices and highways as edges[15], [16]. 

2.3. Flink 

Flink offers both real-time and batch data types with high-throughput and low-latency 

output. When a machine fails, Flink is highly fault-tolerant. Numerous programming 

languages, including Java, Scala, Python, and SQL, are supported by Flink Programs. In 

addition to using particular data structures and algorithms for the batch versions of 

operations like join and grouping, Flink also includes a dedicated API for processing static 

data sets. The result is that, on top of a streaming runtime, Flink presents itself as a 

complete and adequate batch processor [17].  Its benefits include consistent and dependable 

performance, quick data processing, user-friendly APIs, and an open-source community 

that encourages development and support from all developers [18]. Its data analysis is 

expressive, declarative, quick, and effective for both batch and real-time data. The 

Distributed Data-Driven Engines' Complexity is reduced via Apache Flink [19]. Flink is a 

program that has been optimized; using an optimization method in the built-in application 

interface produces results. Due to the processing of the altered portion, it is quicker than 

the Spark. 

In contrast to Spark and Hadoop, Flink returns the result with higher latency and 

throughput. It is a platform that only supports streaming. It has its platform for managing 

memory and does not rely on Java's garbage collection [20]. Figure 4 displays how Flink is 

used in batch and stream data processing. It combines MapReduce's scalability with its 

programming flexibility. For cluster environments, it is appropriate. The speed advantage 

over Hadoop-MapReduce is 100 times. By incorporating conventional database ideas, Flink 

provides a lower level of complexity. Additionally, it provides a very high degree of scalability 

[19]. 

The Flink architecture is a distributed system that needs resources to be allocated and 

managed to run the streaming application. This integrates with famous clusters like Hadoop 

YARN and the Apache Mesons resource manager and may also be used as a standalone 

cluster. Two processes make up Flink: Job Manager and Task Manager. The Task Managers 

are the workers who execute the components as parallel programs, while the Job Manager 

coordinates the Flink System. The same JVM is utilized for the Single Job and Task 

Manager when the system is started in local mode. When a program is uploaded, it 

preprocesses it and converts it into parallel data that the Job Manager and Task Manager 

can use to run [17], [19]- [20]. 
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2.4. Storm  

Apache Storm has been used to implement the real-time data processing topology. 

This system is a part of the Hadoopecosystem [21]. It is distributed real-time computing 

framework that is free and open-source, and it offers an interface for building event-based 

elaborations across a group of physical nodes. By utilizing the topology abstraction, users 

can put the queries to be computed into practice. The Storm Cluster, which is in charge of 

deploying and running, will receive such a topology [22]. It offers complete guarantees of 

successful message processing, is fault-tolerant, and is horizontally scalable. The 

application logic for the Storm can be written in any language, regardless of the 

programming language [23]. The fault-tolerant approach to handling failures offers the 

required level of reliability. At the same time, the distributed computations architecture 

ensures high performance and a wide range of flexibility in creating spouts that support 

various data streams. Support for various technologies is one of Storm's key advantages. 

The adaptable Apache Storm platform supports different technologies (first of all, Java, and 

also .NET, Python, Etc.). It also permits a combination of them [21]. 

Storm offers a solid foundation for work; you may afterwards add and delete 

processing nodes from its cluster. Additionally, it offers an API for keeping track of the 

system's overall health and permits applications to operate on top of it to report 

performance data. Storm efficiently handles unrestricted data streams. It comprises a 

platform that controls and runs user-written application code. The stream, an infinite series 

of tuples, is a crucial idea in Storm (data items). Developers can create processing 

applications using the computing power of every computer in a cluster using the framework 

provided by Storm software. The platform should be able to automatically expand and 

contract as necessary due to the diverse processing requirements of such applications. 

Unfortunately, this capability is unavailable on the current Storm platform [24]. The Storm 

is appropriate for sequential and iterative processing, machine learning, and real-time data 

analysis. A directed acyclic graph (DAG) describes a storm topology. The program DAG's 

edges stand in for data transport. Spouts and bolts are the categories into which the DAG's 

nodes are classified [25]. 

 

2.5. MongoDB 

The most well-known NoSQL database is MongoDB. It is an excellent tool for creating 

data warehouses, especially given its capacity to exploit so-called "sharding-nothing cluster 

architecture fully." Since it is open-source, it is perfect for creating high-performance data 

warehouses. Binary encoded JavaScript Object Notation (JSON), called BSON data 

Figure 4: Usage of Apache Flink 
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structures, are supported by MongoDB's features for storing complicated data types. 

Enables developers to use or store Java Script, functions, and values on the server side; 

supports a simple-to-use protocol to store large files and file metadata; and will provide fast 

serial performance for a single client and use memory-mapped files for fast performance. 

Large binary files like images and videos are distributed and stored using this protocol. This 

feature of MongoDB has led to many projects considering utilizing MongoDB rather than a 

relational database [2].  

 

MongoDB has document-oriented storage; the data is kept in documents that 

resemble JSON. Any character may be used to index it. MongoDB is employed in big data, 

Data Hub, Content Management and Delivery, Mobile and Social Infrastructure, and User 

Data Management. High performance is one of the main features of MongoDB; it Provides 

high-performance data continuity. In particular, it allows for embedded data models, which 

reduce the I/O activity of the database system. Indexes also support faster queries and can 

use embedded documents and array keys in their keys; plus, they have a rich query 

language that allows reading, write, and delete operations, data aggregation, and text 

search. It also has high availability, i.e., the MongoDB replica set replication capability 

provides data redundancy and automatic failover. A replica set is a group of MongoDB 

servers that all maintain the same data set, enhancing data availability and ensuring 

redundancy. As for horizontal scalability, one of MongoDB's main features, data is split 

between a set of machines by hashing [26]. 

 

3. FRAMEWORKS COMPARISON 

 The set of criteria that we will address in this study is (Data Processing, Streaming 

Engine, data flow, computation model, task performance, fault tolerance, scalability, 

Iterative Processing, Language Support, latency, and Processing Speed) and as follows: 

 Data Processing [2], [17], [27] 

 Apache Hadoop: Apache Hadoop was created for batch processing. It simultaneously 

processes a large amount of data as input and outputs the results. Batch processing of vast 

amounts of data is quite efficient. An output is delayed because of the volume of data and 

the system's computing power. 

 Apache Spark: Apache Spark is another part of the Hadoop Ecosystem. It is 

primarily a batch processing system, albeit it also provides stream processing. 

 Apache Flink: enables batch and streaming processing in a single runtime. 

 Apache storm:  A distributed system for processing massive data in real-time is 

called Apache Storm. Despite being stateless, Storm uses Apache Zookeeper to handle the 

distributed environment and cluster state. It is easy to use and allows for the concurrent 

execution of various transformations on real-time data. 

 MongoDB: The best database for developing applications is MongoDB. Because of its 

adaptable data schema and inherent scalability as a NoSQL database, developers favor this 

database. Development teams can iterate and pivot rapidly and effectively because of these 

characteristics. 

 Streaming Engine [2], [25], [28], [29] 

 Apache Hadoop: The batch-oriented processing tool Map-reduce. It receives a sizable 

data set as input, processes it all at once, and outputs the outcome. 

 Apache Spark: All workloads in Apache Spark are executed in micro-batches. 

However, it falls short in use cases when we must handle huge amounts of real-time data 

and deliver conclusions immediately. 
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 Apache Flink: For all workloads, including batch, micro-batch, streaming, and SQL, 

Apache Flink leverages streams. A batch is a small collection of streaming data. 

 Apache Strom: This framework for streaming data has the highest ingestion rates. 

Storm moves the data to the code, as opposed to Hadoop, which moves the code to the data. 

This behavior makes more sense in a stream-processing system since, unlike in a batch job, 

the data set isn't known in advance. Additionally, the code is constantly being passed 

through the dataset. 

 MongoDB: Many applications depend on streaming data in one way or another. Over 

time, MongoDB has improved, providing new features and functionalities to handle these 

workloads. With just a few lines of code, you can easily stream data to and from MongoDB 

using the MongoDB Spark Connector version 10.0. 

 

 Data Flow [10], [11], [17] 

 Apache Hadoop: There are no loops in the MapReduce processing data flow. 

There is a progression to it. You advance through each step by using an output from the 

stage before and creating input for the stage after. 

 Apache Spark: Spark represents the Machine Learning algorithm as a (DAG) 

direct acyclic graph, even though it is a cyclic data flow. 

 Apache Flink: Flink approaches things differently than other apps. In run time, it 

supports the controlled cyclic dependency graph. This makes it easier to efficiently 

represent machine learning algorithms. 

 Apache Storm The directed acyclic graph (DAG) topology of Storm uses spouts, 

bolts, and streams to process data.  

 MongoDB: It is up to data experts to decide whether to incorporate the 

information or acquire it independently in a set of documents when building data models 

in MongoDB. Thus, the two most useful MongoDB data modelling principles are 

embedded and unified data models. 

 

 Computation Model [15], [27], [30] 

 Apache Hadoop: The batch-oriented model was adopted by MapReduce in Apache 

Hadoop. The batch is handling data that is at rest. It simultaneously takes in a lot of 

input, processes it, and then outputs the results. 

 Apache Spark: The micro-batch mode is the foundation of Apache Spark. 

Apache Flink: Flink uses an operator-based streaming approach with continuous 

flow. A continuous flow operator does not wait to gather or process data; instead, they do 

so as it comes in. Meant Flink is built on the computational model with operators. 

 Apache Storm: is a distributed real-time computing system that is free and open 

source. 

 MongoDB: An application frequently has to extract a value from source data that 

is kept in a database. When dealing with huge data sets or situations where numerous 

papers need to be scanned, computing a new value could demand a significant amount of 

CPU power. It might be preferable to save a computed value to the database at the outset 

if that value is frequently requested. As a result, only one read operation is necessary 

when the program requests data. 

 

 Performance [11], [23], [31] 

 Apache Hadoop: Only batch processing is supported by Apache Hadoop. As a 

result of not processing streamed data, it performs less quickly than Spark and Flink. 

 Apache Spark: Despite having a solid community history, Apache Spark is today 
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regarded as having the most established one. However, its stream processing is less 

efficient than Apache Flink due to the utilization of micro-batch processing. Performance 

is significantly improved because memory data access happens in nanoseconds instead 

of milliseconds on a disk drive. 

 Apache Flink: About other data processing systems, Apache Flink performs 

remarkably well. Apache Flink uses native closed-loop iteration operators to speed up 

machine learning and graph processing when comparing Hadoop, Spark. Apache Flink 

performs exceptionally well overall when measured against other data processing 

platforms. 

 Apache Storm: optimizing Apache Storm's speed is a vital but time-consuming 

task because hundreds of parameters can be adjusted and roughly a thousand different 

configurations may be used. 

 MongoDB: You might need to evaluate the performance of the application and its 

database as you create and manage apps using MongoDB. The number of open database 

connections, hardware accessibility, and database access mechanisms frequently factor 

in performance degradation. High-performance data persistence is offered by MongoDB. 

Support for embedded data models, in particular, lowers the amount of I/O activity on 

database systems, while indexes provide quicker queries and can incorporate keys from 

embedded documents and arrays. 

 

 Fault tolerance [11], [17], [30] 

 Apache Hadoop: MapReduce is very fault-tolerant in Apache Hadoop. In the event 

of any Hadoop failure, the application does not need to be restarted from scratch. 

 Apache Spark: Without additional code or configuration, Spark Streaming 

provides exactly-once semantics out of the box and recovers lost work. 

 

 Apache Flink: Chandy-Lamport distributed snapshots serve as the foundation for 

Apache Flink's fault tolerance system. Because of the mechanism's small weight, great 

throughput rates are maintained while also offering solid consistency guarantees. 

 Apache Storm: Based on the "fail fast, auto restart" strategy, Apache Storm is 

fault-tolerant and handles mistakes very effectively. This enables it to restart the process 

whenever a node fails without disrupting the overall operation. The Storm is a fault-

tolerant engine as a result of this characteristic. If one or more nodes fail or a message is 

lost, it ensures that each tuple will be processed "at least once or exactly once." 

 MongoDB: Deploying numerous copies of your database to other servers or model 

instances is known as replication. It is referred to as a replica set in MongoDB. Because 

of this, Mongo]DB offers fault tolerance. 

 

 Scalability [6], [32], [33] 

 Apache Hadoop: Tens of thousands of Nodes have been used in production using 

MapReduce, which has great scalability potential. 

 Apache Spark: The cluster can continue to grow by n nodes because it is very 

scalable. A known huge spark cluster contains 8000 nodes. 

 Apache Flink: The Apache Flink cluster can continue to grow by n nodes because 

it is very scalable. An enormous Flink cluster is one with many thousands of nodes. 

 Apache Storm: it is a highly scalable and quick framework that makes it simple 

to distribute work across several threads, JVMs, or machines—all without having to 

modify your code to scale in that way. With fewer than 20 nodes, it can already handle a 
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million jobs per second for its consumers. Storm can maintain performance even while 

the workload is rising by linearly adding resources. It can scale up very well. 

 MongoDB: Because its data is not relationally linked, MongoDB is scalable. The 

information is self-contained and is kept in documents that resemble JSON. Horizontal 

scaling makes it simple to spread these documents over numerous nodes. MongoDB 

allows you to scale your collections horizontally by hashing the data into smaller 

segments or vertically by adding more resources to the collection. 

 

 Iterative Processing [1], [6], [27], [33] 

 Apache Hadoop: Iterative processing is not supported by Apache Hadoop. 

Apache Spark: This program batches the data iterations. Each iteration in Spark 

needs to be scheduled and carried out independently. It is founded on non-native 

iteration, which is carried out externally like standard for-loops. 

 Apache Flink: This program uses its streaming design to iterate data. The job's 

efficiency can be greatly improved by instructing it to just process the portions of the 

data that have truly changed. Iterate and Delta Iterate are two separate iteration 

operations offered by the Flink API. 

 Apache Storm: it is a real-time streaming solution because its processing 

architecture operates directly on tuple streams, one record at a time. Micro-batches are a 

new option made available by the Trident API. 

 MongoDB: When compared to MongoDB, Hadoop's iterative Map-Reduce 

procedure for big data is particularly slow because iterative tasks necessitate numerous 

Map and Reduce operations to be completed. This procedure multiplies the files between 

the map and reduces the jobs, rendering the map utterly useless for sophisticated 

analysis. MongoDB's most popular and extensively used database established the 

assembly pipeline structure to make up for this setback. 

 

 Language Support [2], [17], [34], [35] 

 Apache Hadoop: It mostly supports Java, although it also supports Ruby, C, C++, 

Groovy, Python, and Perl. 

 Apache Spark: It supports R, Python, Scala, and Java. Scala is used to 

implementing Spark. It offers Java, Python, and R API, among other languages. 

 Apache Flink: It supports R, Python, Scala, and Java. Java is used to implement 

Flink. It also offers Scala API. 

 Apache Storm: Storm supports almost every programming language thanks to its 

multi-language functionality. The languages Java, Clojure, and Scala are all compatible 

with the Trident API for streaming and processing. 

 MongoDB: C, C++, C#, Go, Java, Node.js, PHP, Python, Ruby, Rust, Scala, and 

Swift are the languages that are officially supported and compatible with MongoDB. 

 

 Latency [24], [33], [36] 

 Apache Hadoop: Due to its support for various data types, structures, and 

volumes, Hadoop's MapReduce framework is comparatively slower than other 

frameworks. Hadoophas a higher latency than Spark and Flink because of this. 

Apache Spark: Although Apache Spark is a batch processing system, it is 

significantly faster than Hadoop MapReduce because it uses RDDs to store a 

considerable percentage of the input data in memory and stores intermediate data there 

before writing it to disk when it is finished processing it or as needed. 
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 Apache Spark has a higher latency when compared to Apache Flink. 

 Apache Flink: With little configuration work, Apache Flink's data streaming 

runtime provides high throughput and low latency. 

 Apache Storm: It offers greater low latency with fewer constraints, and its latency 

is measured in milliseconds. 

 MongoDB: MongoDB typically emerges victorious. Thanks to master replication 

and redundancy, MongoDB can take massive amounts of unstructured data significantly 

faster than MySQL. You might gain a lot from this feature depending on the types of data 

you gather. 

 

 Processing Speed [6], [15], [27], [33] 

 Apache Hadoop: MapReduce operations in Apache Hadoop are slower than Spark 

and Flink. The MapReduce-based execution causes the delay because it generates a lot of 

intermediate data and exchanges a lot of data across nodes, resulting in a significant 

increase in disk IO latency. Furthermore, to facilitate job recovery from errors, it must 

persist a large amount of data on a disk for synchronization across phases. Additionally, 

there are no methods in MapReduce for caching all data subsets in memory. 

 Apache Spark: Because it uses RDD to cache a significant chunk of the input 

data in memory and stores intermediate data there before publishing it to disk when 

done or as needed, Apache Spark executes operations more quickly than MapReduce. 

How much better Spark is than Hadoop MapReduce is shown by the fact that it is 100 

times faster than MapReduce. Spark's processing model is slower than Flink's. 

 Apache Flink: It completes processes faster than Spark due to its streaming 

nature. Task performance is enhanced by instructing Flink to just process the data 

portions that have changed. Using Flink, data processing happens quite quickly. 

 Apache Storm: the capacity to do many calculations at the same speed under 

increased load. According to Fast benchmarking, each node can handle one million 100-

byte messages per second. 

 MongoDB: Thanks to in-memory algorithms, it can quickly analyze massive 

amounts of real-time data. A NoSQL database is MongoDB. Its structure is flexible. 

MongoDB is a fantastic option for storing, querying, and analyzing big data since it holds 

enormous amounts of data in a naturally traversable design. 

After summarizing all of the above, we can conclude Table 1 as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.minarjournal.com/


 
Volume 5, Issue 1, March 2023 

 

 

45  

 

www.minarjournal.com 

 

Table 1: Comparison Between the Five Frameworks 

FACTOR HADOOP SPARK FLINK STORM MongoDB 

Data Processing Batch only Hybrid Hybrid Streaming only Real-time 

Streaming Engine No Yes Yes Yes Yes 

Data Flow 

No loops in the 

Map Reduce 

processing data 

flow 

Direct 

acyclic 

graph 

(DAG) 

controlled 

cyclic graph 

Direct acyclic 

graph (DAG) 

Embedded 

data and 

Unified data 

model 

Computation Model In Disk In Memory In Memory In Memory In Memory 

Performance Good Very Good Excellent Very Good Very Good 

Fault Tolerance Yes Yes Yes Yes Yes 

Scalability Yes Yes Yes Yes Yes 

Iterative Processing No Yes Yes Yes Yes 

Language Support 

C, C++, Ruby, 

Groovy, Perl, 

and Python. 

R, Python, 

Scala, and 

Java 

R, Python, 

Scala, and 

Java 

Java, Clojure, 

and Scala 

C, C++, C#, 

Go, Java, 

Node.js, PHP, 

Python, Ruby, 

Rust, Scala 

Latency Higher Medium Low Low Low 

Processing Speed 
Slower than 

Spark and Flink 

Faster than 

Hadoop 

and slower 

than Flink. 

More 

quickly 

than others 

Fast Fast 

 

We can see from the table that Hadoop is an excellent choice to implement at a lower 

cost compared to other frameworks when working with batch workloads and is not time-

sensitive. As for streaming workloads, Storm can provide processing with very low latency, 

and when we have a hybrid workload, Spark provides high-speed batch processing and 

micro-batch processing for streaming data. In contrast, Fink provides accurate stream 

processing with batch processing support with low latency. All of these frameworks run a 

fault tolerance; when a node dies, the worker will be restarted on another node 

automatically. To achieve fault tolerance, these frameworks use strategies such as data and 

computation replication, as well as task rescheduling. Data replication involves copying data 

onto multiple nodes within the cluster to ensure that it can be recovered from the other 

nodes in case of an outage, thereby avoiding any data loss. Computation replication ensures 

that any computations that were running on a failed node are replicated on another node 

within the cluster to prevent processing interruption and loss of progress. These frameworks 

are scalable parallel calculations that run across a cluster of machines. In terms of speed, 

Spark, Flink, Storm, and MongoDB are faster than Hadoop because they store data in 
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memory, while Hadoop stores data in the hard disk; Spark is slower than Flink in terms of 

processing latency because it is a micro-batch, so itis slower than Flink and that is having 

higher latency, Storm is also faster than Spark, as Storm can process over million records 

per second on a cluster of modest size. In terms of ease of use, they are considered easier 

than Hadoop because they are complex and challenging. In terms of cost, Spark, Flink, and 

Storm are more expensive than Hadoop. Spark internally takes advantage of micro-batch for 

processing, but spark stream has a latency of less than a second; Flink is mainly based on 

true event streaming, even batch is a particular case of streaming, but Flink internally will 

process data in the form of a stream, that is why Spark has a higher throughput it because 

it is working in a micro-batch, it is processing multiple events together, while Flink it has 

lower throughput. Flink is better than Spark, and Hadoop and Storm keep performance 

even during increased workloads by adding resources linearly. 

 

4.   Conclusion  

The main objective of this paper is to study and compare big data frameworks with 

their features in manipulating data, then produce a good comparison between frameworks 

by going into deep studding for their abilities from multiple points of view such as data 

streaming, fault tolerance, data processing, latency, and others features. So, any researcher 

who tries to enter and work with this field of information must spend a huge amount of time 

to differentiate between various abilities of big data frameworks, Therefore, this paper will 

play a role in choosing the appropriate framework. Following a brief introduction and 

comparison of Hadoop, Flink, Storm, Spark and MongoDB, it is determined that Flink is 

from a researcher's point of view is the fastest and most reliable framework when compared 

to other frameworks because it can process data in both streaming and batch form for the 

same version and is faster and more dependable due to fault tolerance, low latency, and 

high throughput. It is possible to select a framework for large data that works with parallel 

processing if you so like. In point of fact, the majority of big data frameworks are designed to 

support parallel processing and distributed computing in order to manage the large volumes 

of data that are typically involved in big data applications. This is done for the purpose of 

handling the workload that is presented by big data. Apache Hadoop, Apache Spark, Apache 

Flink, and Apache Storm are only few of the popular big data frameworks that offer parallel 

processing. These frameworks offer distributed computing capabilities, which make it 

possible to analyze big datasets over a cluster of computers in a parallel manner that is also 

fault-tolerant. 
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