
MINAR

This article has been scanned by iThenticat No plagiarism detected

International Journal of Applied Sciences and Technology

ISSN: 2717-8234

Article type: Research Article

Received: 04/06/2022 Accepted: 19/06/2022 Published: 01/09/2022

A COMPARISON BETWEEN NOSQL AND RDBMS: STORAGE AND RETRIEVAL

Sameera Abbas FADHEL 1

University of Mosul, Iraq

Enas Ali JAMEEL 2

University of Mosul, Iraq

Abstract

Relational database management systems (RDBMS) emerged as the solution for data storage

in the past decades. All data storage systems and applications utilize a RDBMS in the heart

of the system to store and retrieve the data. In the past few years a new data storage model,

named Not Only Structured Query Language (NOSQL), has emerged to produce less complex

data storage systems and to tackle the data's massive volume performance degradation of

used systems. In this work, a comparison study is conducted between MySQL as an example

of RDBMS and Monogodb as an example of NOSQL systems using threading and machine

resources to show the differences for developers to select one of these models for their

applications. The results show that the performance of NoSQL is less than MySQL for small

datasets and few database operations, such as few thousands of records and hundreds of

operations per day. However, with the introduction of threads and volumes of data, the

performance of Mongodb overcomes My Structured Query Language (MySQL). In addition, the

results have shown that Mongodb requires more memory usage and CPU resources than

MySQL to complete their tasks. Finally, the images were saved as byte data inside both

platforms. The storing process for this data inside Mongodb was faster than the MySQL

platform.

Keywords: Mongodb, NoSQL, Relational Database Management System (RDBMS), MySQL,

CPU utilization, Threading.

http://dx.doi.org/10.47832/2717-8234.12.18

1 sameeraabbasfadhel@uomosul.edu.iq, https://orcid.org/0000-0002-5811-4911

2 EnasAliJameel@uomosul.edu.iq, https://orcid.org/0000-0003-3973-4282

Volume 4, Issue 3, September 2022

173

www.minarjournal.com

Introduction

Data is the new oil [1], a sentence that has been used widely in the past few years. In

2020, it has been reported that 2.5 quintillion bytes of data was created in daily bases.

Moreover, it has been estimated in 2025 that the world will have 175 zettabytes of data. With

the introduction of the Internet of things (IoT) and their applications, billions of devices will

generate a massive amount of data daily, such as smartphones, smart-watches, computers,

tablets, smart glasses and even home appliances [3]. All of this data has to be transferred

from one location to another location for analytics and analysis. However, before processing

this massive amount of data, this data has to be stored. Databases have dominated in the

storage area. Nevertheless, with the introduction of this massive amount of data, the classical

database structure, named the RDBMS, revealed many performance issues [4]. To tackle these

issues, different database systems and paradigms have been proposed in the past few years.

One of these paradigms that became popular is NoSQL.

NoSQL has been proposed to handle data volumes in more efficient methods. Its roles

and structure does not follow the relational model of classical RDBMS. In RDBMS, relations

“tables” are utilized to record the data. Each table has a special unduplicated key to identify

each row “data record”. These keys are leveraged to create connections and links between the

relations. This means that before storing any data records in RDBMS systems, a database

schematic has to be created. In addition, data normalization has to be performed on the data

to create a database schematic without duplicated data. These roles are not followed in NoSQL

systems. Moreover, NoSQL does not satisfy atomicity, consistency, isolation, and durability

(ACID) [5,6]. NoSQL adopts different data models, such as, column, key-values, documents

and graphs. Documents data model has dominated in NoSQL approach. In this way, the

database is a collection of volumes of independent documents. Each document stores its

schematic and its own data. As mentioned no database schematic is used. This means that

the sored documents may have different schemas and structures. The documents have to be

encoded to be stored in the NoSQL model. Different encoding methods can be leveraged, such

as, extensible markup language (XML), JavaScript object notation (JSON), binary JSON

(BSON), human-readable data-serialization language (YAML) and binary format [7]. This

document based data storing model allows the NoSQL system to be easily divided over

numbers of servers in cloud and data center. The question that emerges is, which database

paradigm to select for your application? Does the application require NoSQL or RDBMS?

In this work, a comparison study between NoSQL and RDBMS paradigm is conducted.

Mongodb has been selected as the example of the NoSQL model. It has been selected since it

is the most popular NoSQL system in the world [8]. MySQL has been selected as the example

of a DBMS system. These two systems have been compared according to many different

performance metrics. First, the impact of threading and parallel requirements on these

systems will be studied. Different numbers of threads will be created to perform simple and

complex data retrieval operations over these systems. Second, Python connector for these two

systems will be investigated. Python will be leveraged to generate the threads and attempts to

connect with the database. Python has been leveraged since it has dominated in the data

science and machine learning area in the past few years. Finally, the CPU utilization and

memory usages will be measured to show the load of these systems on the computer

resources. In this experiment study, the following questions should be answered:

• Which platform is faster under the usage of threading?

• Which platform has fewer loads on the system resources, such as memory and CPU?

• Which platform can handle massive amounts of data faster?

• Is the Python connector a good selection for these systems ?

• How do both systems deal with different data structures, such as images?

The rest of this paper is organized as follows; in the next section, some of the works

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

174

www.minarjournal.com

and experiments that have been conducted in the area of database system comparisons are

overviewed. Section 3 introduces the method that has been used and the leveraged tools.

Section 4, overviews the obtained results. Finally, the conclusion of this paper in section 5.

2. Related Works:

All The migration process from RDBMS to NoSQL platforms proliferated in the past few

years [Bansal et al. 2021]. Different technical details and developments are proposed to

convert the structural relational datasets into document oriented models [Abdelhedi et al.

2022, Namdeo et al. 2012]. Other researchers attempted to design an advisor for schema

design to migrate from RDBMS to NoSQL [Dabowsa et al. 2021]. However, why migrate from

RDBMS to NoSQL systems?

Comparing relational databases and NoSQL databases have attracted researchers over

the past years. These

comparisons attempted to measure the time required to perform data manipulating and

controlling for both platforms. As an example of RDBMS systems, MySQL and Mongodb have

dominated for the comparisons in research papers. In addition, different datasets have been

leveraged. For example, in [Jose et al. 2021], the authors attempted to compare Mongo and

MySQL for data enquiries over two different datasets. The authors have shown that the time

required for simple select, select with condition, updating and inserting for Mongodb is less

than MySQL for all different scenarios. In [Reichardt et al. 2021], the authors compared four

different database systems, three NoSQL platforms “Mongodb, Redis, Cassandra” and one

RDBMS platform “MySQL”. The author leveraged the Python driver library to connect with the

database platforms. The author reported that NoSQL platforms are faster than MySQL for

updating, inserting, reading and writing for small datasets. However, MySQL performed better

for large values “300K values”. In [Pereira et al. 2018], the authors compared three different

NoSQL platforms’; Mongodb, Rethnkdb and Couchbase. The author reported that the

performance of Monogodb and Couchbase overcomes Rethinkdb. Moreover, the authors have

shown that Monogodb overcomes Couchbase for multi-thread operations. However,

Couchbase scored betere results for select with condition “GET with ID”. In [Győrödi et al.

2020], the authors compared the performance of MySQL and the Couchbase NoSQL platform.

CRUD operations have been investigated. The results reported in the work have shown that

MySQL performs better for small operations and structured data. However, for complex and

massive operations, NoSQL performed better. Another comparison between MySQL and

Mongodb has been reported in [Matallah et al. 2021], the author utilized Yahoo Cloud Serving

Benchmark [Cooper et al. 2010]. The author reported that Mongodb operation execution time

is less than MySQL for all types of operations .

In [Sánchez-de-Madariaga et al. 2018], medical data records have been used to compare

RDBMS and NoSQL. The authors reported that Mongodb execution time is lower than MySQL

for all types of operations. In [Das et al. 2019], loading and data scanning metrics have been

used to compare MySQL and NoSQL HBase platforms. The author reported that HBase

performs better in these metrics than MySQL. In [Yassine et al. 2018], the migration process

from MySQL to Monogdb has been investigated. The performance of complex operations has

been compared between the two platforms, Mongodb outperformed Mysql for complex

operations. In [Chakraborty et al 2021], a dataset of COVID-19 genome has been used for the

comparison purpose between MySQL and Mongodb. Two main operations have been used for

the comparison purpose, data loading and complex inquiries. Mongodb has outperformed

MySQL for both operations .

With the introduction of cloud computing and their services, database as a service has

been introduced by different cloud vendors. RDBMS and NoSQL have been designed to work

with different cloud platforms. In [Shareef et al. 2022], a survey and a comparison of different

http://www.minarjournal.com/

Volume 4, Issue 3, September 2022

175

www.minarjournal.com

cloud based database systems have been reviewed. The scalability of these systems have been

overviewed. In [Zaman et al. 2021], a comparison between Azure SQL and Atlas Mongodb has

been conducted. The results have shown that data loading, retrieving and uploading time for

Azure is much less than Atlas. These results show that the cloud platform selecting process

is an important process .

This work differs from other works in three main folds. First, storing and retrieving

special data types, such as images. Second, Python database connector will be utilized to load

the data and to perform the inquiries. In this way, the performance of the databases with their

interface was measured. Finally, inquiries' resources, such as, the memory usage and CPU

utilizations using different threads to access the databases in parallel will be measured.

3. Experiment Details

This section consists of two main parts. The first part describes the process used to

generate the dataset utilized in the comparison. In the second part, the operations and

inquiries used will be overviewed.

3.1 The Dataset

To compare the two databases’ platforms, a dataset has to be used. The dataset from

the students’ records and their classes were created. Moreover, the information of 500

students with 20 lecturers has been added to create the database schematic.

Figure 1 .RDBMS Database Schema Design

Figure 1 shows the designed schematic. The first table consists of the information of the

500 students. The second table consists of the information of the 20 lecturers. The third table

has the grade information of these students. This table consists of 20,000 records. The fourth

table consists of the classes’ information. The fifth table consists of the curriculums’

information. This table is created from the relation between the curriculum, students and the

lecturers. To fill out these tables, a home page has been created and each student has been

asked to fill the grades off all the classes that have been attended. Subsequently, the data has

been extracted from the databases’ tables into csv files. Moreover, this data has been exported

from MySQL to be loaded into new databases. In addition, these files have been analyzed to

generate data documents for each student, grads, classes and lecturers. These documents

have been converted into JSON files to be loaded into Mongodb.

Mongodb version 5.0.6 has been used for NoSQL databases and MySQL server version

8.0.28 has been used for the RDBMS. The PC used in this experiment is Intel i5 10 generation

with 8G RAM and 1 Tbyte storage. Windows 10 has been used as the operating system for the

PC. Python 3.6 has been utilized to connect to the databases. To export the dataset from the

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

176

www.minarjournal.com

first created database, the export tool of MySQL has been used. To create the schema for

MySQL, the MySQL client tool has been used. Finally, to connect the databases with Python,

two connector libraries have been downloaded. The first connector is Pymongo that connects

to the Mongodb database. On the other hand, Mysql-connector-python-8.0.28 connector has

been used to connect Python to MySQL.

Table 1 .Load Time of Both Platforms

Platform Time

MySQL 11 mins

Mongodb 5 mins

The exported MySQL version of the files and the JSON file to load them into newly

created databases was utilized. Table 1 shows the time required to load both files into the new

databases. The observation from the table that the time required to load the JSON files into

Mongodb is less than the time required to load the same data into MySQL since the imported

file from MySQL has SQL statements that should be executed one by one to create the same

database as the original one. However, in Mongodb, the JSON file has been used to generate

documents for each entry in the file only. In addition, JSON files for all the data “students,

lecturer, classes and grades” have been inserted into the same collection without creating a

new schema. This is not the case with MySQL that requires the creation of a new schema for

each table and inserting its data in a separate process.

3.2 Operations and Inquires

To compare the two platforms' performances utilizing the generated dataset, four

different operations have been leveraged. The following subsections introduces these

operations.

A- Select or Find

The first operation is the find or “select” inquiry. Three versions have been used from

this inquiry. The first is a common simple find command on the mark table that consists of

20,000 records. This select operation retrieved the record limited to a different number of

records. In the second form of this inquiry, a condition has been added to select only the

marks of the students in the same major only. The last version is to utilize 10 threads to

retrieve the marks for ten different majors from the same database.

Table 2 .The Select Inquiries Performed

Operation Platform Inquiry

Simple

Select

MySQL Select * from marks LIMIT

Complex

Select

MySQL Select * from marks where “student_id” like

{%num%}

Simple

Select

Mongodb db.marks.find.limit(). explain()

Complex

Select

Mongodb db.marks.findOne({“student_id”:

{$regex:”num”}})

20 different threads have been created using the threading library in Python. Each

http://www.minarjournal.com/

Volume 4, Issue 3, September 2022

177

www.minarjournal.com

thread creates a different connection using the connector library for each platform. The time

is recorded when all threads retrieve the data from the database. Moreover, CPU utilization

has been recorded for each system when utilizing these threads. Table 2 shows the inquiries

that have been used in the first operation.

B- Update Inquiries

The second type of used inquiry is the update command. Three versions of update have

been used for the comparison process.

Table 3 .The Update Inquiries Performed

Operatio

n

Platfor

m

Inquiry

Simple

Update

MySQL update marks set marks =50 where “student_id”=xx

Complex

Update

MySQL update marks set marks =50 where “ student_id” like {%num%}

Simple

Update

Mongod

b

db.marks.explain().update({“studnet_id”:xx},{$set:{”mark”:50}})

Complex

Update

Mongod

b

db.marks.explain().update({“studnet_id”:{$regex:num}},{$set:{”mark

”:50}, {$multi:true}})

The first update inquiry is to update a select field in the only one record in the mark

table. The second version is to update all the marks for all the students in the same major.

Finally, the last version is to update only one record for 20 students utilizing threads. The

threads have been created and configured as in the select inquiry. Table 3 shows the update

inquiries performed.

C- Delete Operation

The third operation is the data deleting process. As in the select and update, this

operation consists of three versions.

Table 4 .The Delete Inquires Executed

Operation Platform Inquiry

Single

Delete

MySQL Delete from marks where “student_id”=xx

Multiple

Delete

MySQL Delete from marks where “ student_id” like {%num%}

Single

Delect

Mongodb db.marks.explain().deleteOne({“studnet_id”:xx},{$set:{”mark”:

50}})

Multiple

Delete

Mongodb db.marks.explain().deleteMany({“studnet_id”:{$regex:num}},{$

set:{”mark”:50}, {$multi:true}}){$multi:true}})

In the first type, one record will be deleted. In the second version multiple recorders are

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

178

www.minarjournal.com

selected for the deletion process. Finally, 20 threads are used to delete one 20 records. Table

4 shows the inquires executed against the two systems.

4. Results

This section consists of four main subsections. Each one of the subsections discusses

the results obtained by the inquiries in each case.

4.1 Select Case

Figure 2 .Simple Select Operation

Figure 2 shows the time of executing the simple select operation utilizing one thread

with a different number of retrieved records. The observation that the time is almost the same

for both systems with a small number of records. However, with higher numbers Monogdb

recorded less execution time.

Figure 3 .Threading Comparison for Simple Select

Figure 3 shows the recorded execution time for the compex inquiry against the two

platforms. The observation observe that Mongodb recorded less retrieval time than MySQL.

http://www.minarjournal.com/

Volume 4, Issue 3, September 2022

179

www.minarjournal.com

Figure 4 .System Resource for Threading in Simple Select

Finally, figure 4 shows how both systems operate with different numbers of threads.

The observation of the Mongodb has less execution time however. In figure 4, the observation

of the Mongodb utilized another 25% more CPU utilization among all the created threads. In

addition, the memory usage of Mongodb compared with MySQL server for these threads is

shown in figure 4. Memory usage of Mongodb is higher with more than 10% when utilizing

these threads. This means that there is a trade-off between the system resource and execution

time for these two platforms. It worth mentioning that is not compare the complex select since

it is similar to the multiple updates shown in the next section.

4.2 Update Case

Figure 5 .Update Comparison

Figure 5 shows the execution time of record updating using both platforms. The

observation for a single update MySQL recorded a better time. However, when the number of

records increases, the time for Mongodb decreases compared with MySQL.

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

180

www.minarjournal.com

Figure 6 .Threading comparison for Update Process

Figure 6 shows the updating record time utilizing threads. Thread connections are less

time consuming in Mongodb compared to MySQL.

Figure 7 .System Resource Usage in Update

However, figure 7 shows the memory usage and CPU utilization of both Mongodb and

MySQL. The observation for updating, the memory usage of both systems is approximately

the same. However, for CPU utilization, Mongodb increased the CPU utilization up to 40%

compared to MySQL that increased it with 11% only.

http://www.minarjournal.com/

Volume 4, Issue 3, September 2022

181

www.minarjournal.com

4.3. Data Deletion Case

Figure 8 .Delete Comparison between the Two Platforms

Figure 8 shows the time required for data deletion in both systems. The observation for

deleting a document is easier than deleting a record in a table.

Figure 9 .Threading Comparison in Deletion

The execution time for Mongodb is better than MySQL even for one record. Moreover,

for the number of records, Mongodb has recorded a lower execution time. For threading,

Mongodb has also recorded better time as shown in Figure 9. However, for system resources,

the same results as shown for data updating inquiries were recorded.

4.4 Storing Images

The constructed system by adding images of the students and the lecturers in the

databases was enhanced. To save images in databases, systems store these images directly

in operating system file system folders and save a link as a “varchar” in one column in the

tables in classical RDBMS databases. The same can be followed in NoSQL. However, images

can be stored as byte data inside Mongodb and can be stored as a “blob”. There is a data type

http://www.ijherjournal.com/

MINAR International Journal of Applied Sciences and Technology

182

www.minarjournal.com

called longblob that can be leveraged in MySQL. The images were saved inside Mongodb and

MySQL.

Table 5 .Image insertion and Retrieving Comparison

Operation Platform Time

Insertion MySQL 110

ms

Retrieval MySQL 87

ms

Insertion Mongodb 90

ms

Retrieval Mongodb 77

ms

Table 5 shows the time required to save one image and to retrieve it for both systems.

The observation of the time is high for both platforms. However, it is better in Mongodb. This

method is not recommended for both systems.

5. Conclusion:

In this work, a comparison study has been conducted between RDBMS and NoSQL

platforms for different data operations. A new dataset has been harvested from the university

students. Threading and system resources have been leveraged as a performance metric for

the comparison process. Moreover, images have been also utilized as a complex data type for

insertion and retrieving. The data shows that Mongodb overcomes MySQL for complex data

types and large data volumes. However, Mongodb consumes more system resources than the

MySQL platform for memory and CPU. This makes an issue for developers that leverage and

lease resources from cloud systems. The observation for developing NoSQL Mongodb is easier

than MySQL since the developer does not require to learn SQL language. Moreover, no

schema, data normalizations are required. In addition, importing the data and exporting is

easier with NoSQL since it deals with documents.

6. References:

http://www.minarjournal.com/

Volume 4, Issue 3, September 2022

183

www.minarjournal.com

[1] Humby, C. (2006). Data is the new oil. Proc. ANA Sr. Marketer’s Summit. Evanston, IL,

USA.

[2] Data Statistics. (october, 2021). How much data is creted everyday.

https://seedscientific.com/how-much-data-is-created-every-day

[3] Masoud, M, Jaradat, Y, Manasrah, A, Jannoud, I. (2019). Sensors of smart devices in the

internet of everything (IoE) era: big opportunities and massive doubts. Journal of Sensors.

[4] Kumawat, D and Pavate, A. (2018). Correlation of NOSQL & SQL Database. IOSR J. Comput.

Eng.(IOSR-JCE), 18, 70-74.

[5] Truica, C, Radulescu, F, Boicea and A, Bucur, I. (2015). Performance evaluation for CRUD

operations in asynchronously replicated document oriented database. In 2015 20th

International Conference on Control Systems and Computer Science, 191-196.

[6] Gupta, S and Rani, R. (2016). Data Transformation and Query Analysis of Elasticsearch

and CouchDB Document Oriented Databases. PhD diss.

[7] Meier, A and Kaufmann. (2019). M. SQL & NoSQL Databases: Models, Languages,

Consistency Options and Architectures for Big Data Management; Springer Vieweg:

Wiesbaden, Germany.

[8] DB engines. (2022). Database system ranking. https://db-engines.com/en/ranking_trend

[9] Bansal, N, Soni, K and Sachdeva, S. (2021). Journey of Database Migration from RDBMS

to NoSQL Data Stores. In International Conference on Big Data Analytics, 159-177 .

[10] Abdelhedi, F, Jemmali, R and Zurfluh, G. (2022). Relational Databases Ingestion into a

NoSQL Data Warehouse. arXiv preprint arXiv:2203.06949.

[11] Namdeo, B and Suman U. (2012). Schema design advisor model for RDBMS to NoSQL

database migration. International Journal of Information Technology, 13 (1), 277-286.

[12] Dabowsa, N, Maatuk, A, Elakeili, S and Ali, A. (2021). Converting Relational Database to

Document-Oriented NoSQL Cloud Database. In 2021 IEEE 1st International Maghreb Meeting

of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering

MI-STA, 381-386.

[13] Jose, B and Abraham S. (2020). Performance analysis of NoSQL and relational databases

with MongoDB and MySQL. Materials today: PROCEEDINGS 24 , 2036-2043.

[14] Reichardt, M, Gundall, M and Schotten, H. (2021). Benchmarking the Operation Times

of NoSQL and MySQL Databases for Python Clients. In IECON 2021–47th Annual Conference

of the IEEE Industrial Electronics Society, 1-8.

[15] Pereira, D, Morais, W and Freitas E. (2018). NoSQL real-time database performance

comparison. International Journal of Parallel, Emergent and Distributed Systems , 2, 144-156.

[16] Győrödi, C, Dumşe-Burescu, D, Zmaranda, D, Győrödi, R, Gabor, G, and Pecherle, G.

(2020). Performance Analysis of NoSQL and Relational Databases with CouchDB and MySQL

for Application’s Data Storage. Applied Sciences, 23 (8524).

[17] Matallah, H, Belalem, G and Bouamrane, K. (2021). Comparative study between the

MySQL relational database and the MongoDB NoSQL database. International Journal of

Software Science and Computational Intelligence (IJSSCI), 3, 38-63.

[18] Cooper, B, Silberstein, A, Tam, E, Ramakrishnan, R and Sears, R. (2010). Benchmarking

cloud serving systems with YCSB. In Proceedings of the 1st ACM symposium on Cloud

computing ,143-154.

[19] Sánchez-de-Madariaga, R, Muñoz, A, Castro, A, Moreno, O and Pascual, M. (2018).

Executing complexity-increasing queries in relational (MySQL) and NoSQL (MongoDB and

EXist) size-growing ISO/EN 13606 standardized EHR databases. Journal of Visualized

Experiments, e57439.

[20] Das, N, Paul, S, Sarkar, B and Chakrabarti, S. (2019). NoSQL overview and performance

testing of HBase over multiple nodes with MYSQL. In Emerging technologies in data mining

and information security, 269-279.

http://www.ijherjournal.com/
https://seedscientific.com/how-much-data-is-created-every-day
https://db-engines.com/en/ranking_trend

MINAR International Journal of Applied Sciences and Technology

184

www.minarjournal.com

[21] Yassine, F and Awad, M. (2018). Migrating from SQL to NOSQL Database: Practices and

Analysis. In 2018 International Conference on Innovations in Information Technology (IIT) , 58-

62.

[22] Chakraborty, S, Paul, S and Hasan, KM. (2021). Performance comparison for data

retrieval from nosql and sql databases: a case study for covid-19 genome sequence dataset.

In 2021 2nd International Conference on Robotics, electrical and signal processing techniques

(ICREST), 324-328.

[23] Shareef. T, Sharif. K, and Rashid. B. (2022). A Survey of Comparison Different Cloud

Database Performance: SQL and NoSQL. Passer Journal of Basic and Applied Sciences, 4(1),

45-57.

[24] Zaman. F, Khuhro. M, Kumar, K, Mirbahar, N, Khan, M and Kalhoro A. (2021).

Comparative Case Study Difference Between Azure Cloud SQL and Atlas MongoDB NoSQL

Database. International Journal, 9(7).

http://www.minarjournal.com/

